Structure-based design of a novel inhibitor of the ZIKA virus NS2B/NS3 protease

被引:7
|
作者
Xiong, Yanchao [1 ,2 ,3 ]
Cheng, Fei [1 ,2 ]
Zhang, Junyi [1 ,2 ]
Su, Haixia [1 ,2 ]
Hu, Hangchen [4 ]
Zou, Yi [1 ,2 ]
Li, Minjun [5 ]
Xu, Yechun [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Mat Med, CAS Key Lab Receptor Res, Shanghai 201203, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai 201203, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Pharmaceut Sci & Technol, Hangzhou 310024, Zhejiang, Peoples R China
[5] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Zika virus; Fragment -based hit screening; Protein -inhibitor interactions; NS2B; NS3; protease; Crystal structure; NS2B-NS3; PROTEASE; ANTIVIRAL ACTIVITY; ALLOSTERIC INHIBITORS; CRYSTAL-STRUCTURE; BROAD-SPECTRUM; POTENT; DRUG; DISCOVERY; INFECTION;
D O I
10.1016/j.bioorg.2022.106109
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Zika virus (ZIKV) has been a serious public health problem, and there is no vaccine or drug approved for the prevention or treatment of ZIKV yet. The ZIKV NS2B/NS3 protease plays an important role in processing the virus precursor polyprotein and is thus a promising target for antiviral drugs development. In order to discover novel inhibitors of this protease, we carried out a fragment-based hit screening and characterized protein -inhibitor interactions using the X-ray crystallography together with isothermal titration calorimetry. We re-ported two high-resolution crystal structures of the protease (bZiPro(C143S)) in complex with an active fragment as well as a tetrapeptide, revealing that there is domain swapping in the protein structures and two ligands only occupy the substrate-binding pocket of one copy in a symmetric unit. Based on the detailed binding modes of two ligands revealed by crystal structures, we designed a novel inhibitor which inhibits the NS2B/NS3 protease with a higher potency than the fragment and possesses a higher ligand-binding efficiency and a comparable IC50 compared to the tetrapeptide. These results thus provide a structural basis and valuable hint for development of more potent inhibitors of the ZIKV NS2B/NS3 protease.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells
    Wu, Deng-wei
    Mao, Fei
    Ye, Yan
    Li, Jian
    Xu, Chuan-lian
    Luo, Xiao-min
    Chen, Jing
    Shen, Xu
    ACTA PHARMACOLOGICA SINICA, 2015, 36 (09) : 1126 - 1136
  • [32] Homology modeling and molecular dynamics simulations of Dengue virus NS2B/NS3 protease: insight into molecular interaction
    Wichapong, Kanin
    Pianwanit, Somsak
    Sippl, Wolfgang
    Kokpol, Sirirat
    JOURNAL OF MOLECULAR RECOGNITION, 2010, 23 (03) : 283 - 300
  • [33] pH and non-covalent ligand binding modulate Zika virus NS2B/NS3 protease binding site residues: Discoveries from MD and constant pH MD simulations
    Santos, Lucianna H.
    Caffarena, Ernesto R.
    Ferreira, Rafaela S.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (20) : 10359 - 10372
  • [34] Structural characterization of the linked NS2B-NS3 protease of Zika virus
    Li, Yan
    Phoo, Wint Wint
    Loh, Ying Ru
    Zhang, Zhenzhen
    Ng, Elizabeth Yihui
    Wang, Weiling
    Keller, Thomas H.
    Luo, Dahai
    Kang, CongBao
    FEBS LETTERS, 2017, 591 (15): : 2338 - 2347
  • [35] In-silico Design of Curcumin Analogs as Potential Inhibitors of Dengue Virus NS2B/NS3 Protease
    Roney, Miah
    Huq, A. K. M. Moyeenul
    Aluwi, Mohd Fadhlizil Fasihi Mohd
    Tajuddin, Saiful Nizam
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2023, : 645 - 653
  • [36] Flavonoids from Pterogyne nitens as Zika virus NS2B-NS3 protease inhibitors
    Lima, Caroline Sprengel
    Mottin, Melina
    de Assis, Leticia Ribeiro
    de Moraes Roso Mesquita, Nathalya Cristina
    de Paula Sousa, Bruna Katiele
    Coimbra, Lais Durco
    Bispo-dos-Santos, Karina
    Zorn, Kimberley M.
    Guido, Rafael V. C.
    Ekins, Sean
    Marques, Rafael Elias
    Proenca-Modena, Jose Luiz
    Oliva, Glaucius
    Andrade, Carolina Horta
    Regasini, Luis Octavio
    BIOORGANIC CHEMISTRY, 2021, 109
  • [37] The reaction mechanism of Zika virus NS2B/NS3 serine protease inhibition by dipeptidyl aldehyde: a QM/MM study
    Nutho, Bodee
    Mulholland, Adrian J.
    Rungrotmongkol, Thanyada
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (27) : 14945 - 14956
  • [38] Identification of a C2-symmetric diol based human immunodeficiency virus protease inhibitor targeting Zika virus NS2B-NS3 protease
    Akaberi, Dario
    Chinthakindi, Praveen K.
    Bahlstrom, Amanda
    Palanisamy, Navaneethan
    Sandstrom, Anja
    Lundkvist, Ake
    Lennerstrand, Johan
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2020, 38 (18) : 5526 - 5536
  • [39] Fragment-based design of α-cyanoacrylates and α-cyanoacrylamides targeting Dengue and Zika NS2B/NS3 proteases
    Vilela, Gabriel Gomes
    dos Santos Silva, Wadja Feitosa
    Batista, Vitoria de Melo
    Silva, Leandro Rocha
    Maus, Hannah
    Hammerschmidt, Stefan Josef
    Crisostomo Bezerra Costa, Clara Andrezza
    da Silva Moura, Orlando Francisco
    de Freitas, Johnnatan Duarte
    Coelho, Grazielle Lobo
    Brandao, Julia de Andrade
    Anderson, Leticia
    Bassi, Enio Jose
    De Araujo-Junior, Joao Xavier
    Schirmeister, Tanja
    da Silva-Junior, Edeildo Ferreira
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (42) : 20322 - 20346
  • [40] Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor
    Chan, Jasper Fuk-Woo
    Chik, Kenn Ka-Heng
    Yuan, Shuofeng
    Yip, Cyril Chik-Yan
    Zhu, Zheng
    Tee, Kah-Meng
    Tsang, Jessica Oi-Ling
    Chan, Chris Chung-Sing
    Poon, Vincent Kwok-Man
    Lu, Gang
    Zhang, Anna Jinxia
    Lai, Kin-Kui
    Chan, Kwok-Hung
    Kao, Richard Yi-Tsun
    Yuen, Kwok-Yung
    ANTIVIRAL RESEARCH, 2017, 141 : 29 - 37