On the structure and phase transitions of power-law Poissonian ensembles

被引:10
作者
Eliazar, Iddo [1 ]
Oshanin, Gleb [2 ]
机构
[1] Holon Inst Technol, IL-58102 Holon, Israel
[2] Univ Paris 06, CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75252 Paris, France
关键词
ANOMALOUS DIFFUSION; DISTRIBUTIONS;
D O I
10.1088/1751-8113/45/40/405003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods-oligarchic analysis, Lorenzian analysis and heterogeneity analysis-to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.
引用
收藏
页数:16
相关论文
共 57 条
[51]   Two stock options at the races: Black-Scholes forecasts [J].
Oshanin, G. ;
Schehr, G. .
QUANTITATIVE FINANCE, 2012, 12 (09) :1325-1333
[52]   Proportionate vs disproportionate distribution of wealth of two individuals in a tempered Paretian ensemble [J].
Oshanin, G. ;
Holovatch, Yu ;
Schehr, G. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (23-24) :4340-4346
[53]   Helix or coil? Fate of a melting heteropolymer [J].
Oshanin, G. ;
Redner, S. .
EPL, 2009, 85 (01)
[54]  
Shannon C. E., 1964, The mathematical theory of communication
[55]   Sampling from scale-free networks and the matchmaking paradox [J].
Sokolov, I. M. ;
Eliazar, I. I. .
PHYSICAL REVIEW E, 2010, 81 (02)
[56]  
Streit RL, 2010, POISSON POINT PROCESSES: IMAGING, TRACKING, AND SENSING, P1, DOI 10.1007/978-1-4419-6923-1_1
[57]  
Wolff R. W., 1989, Stochastic modeling and the theory of queues