On the structure and phase transitions of power-law Poissonian ensembles

被引:10
作者
Eliazar, Iddo [1 ]
Oshanin, Gleb [2 ]
机构
[1] Holon Inst Technol, IL-58102 Holon, Israel
[2] Univ Paris 06, CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75252 Paris, France
关键词
ANOMALOUS DIFFUSION; DISTRIBUTIONS;
D O I
10.1088/1751-8113/45/40/405003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods-oligarchic analysis, Lorenzian analysis and heterogeneity analysis-to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.
引用
收藏
页数:16
相关论文
共 57 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
[Anonymous], 1987, ASYMPTOTIC THEORY EX
[3]  
[Anonymous], 2006, Elements of Information Theory
[4]  
[Anonymous], 2006, FRACTALS DIFFUSIONS
[5]  
[Anonymous], 1994, Fractals in science
[6]  
[Anonymous], WILEY SER PROBAB ST
[7]  
[Anonymous], 1992, NEW FRONTIERS SCI
[8]  
[Anonymous], EUR PHYS J IN PRESS
[9]  
[Anonymous], 1896, Cours dEconomie Politique
[10]  
[Anonymous], COMPLEX NETWORKS