Cooper pair splitting in parallel quantum dot Josephson junctions

被引:68
作者
Deacon, R. S. [1 ,2 ]
Oiwa, A. [3 ]
Sailer, J. [4 ]
Baba, S. [4 ]
Kanai, Y. [3 ]
Shibata, K. [5 ,6 ]
Hirakawa, K. [5 ,6 ,7 ]
Tarucha, S. [2 ,4 ,6 ,8 ]
机构
[1] RIKEN, Adv Device Lab, Wako, Saitama 3510198, Japan
[2] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[3] Osaka Univ, Inst Sci & Ind Res, Ibaraki 5670047, Japan
[4] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
[5] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538505, Japan
[6] Univ Tokyo, INQIE, Meguro Ku, Tokyo 1538505, Japan
[7] JST CREST, Kawaguchi, Saitama 3320012, Japan
[8] Univ Tokyo, QPEC, Bunkyo Ku, Tokyo 1138656, Japan
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
SUPERCONDUCTOR; ENTANGLEMENT;
D O I
10.1038/ncomms8446
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair.
引用
收藏
页数:6
相关论文
共 27 条
[1]   EXPERIMENTAL REALIZATION OF EINSTEIN-PODOLSKY-ROSEN-BOHM GEDANKENEXPERIMENT - A NEW VIOLATION OF BELL INEQUALITIES [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :91-94
[2]   Quantum entanglement in carbon nanotubes [J].
Bena, C ;
Vishveshwara, S ;
Balents, L ;
Fisher, MPA .
PHYSICAL REVIEW LETTERS, 2002, 89 (03)
[3]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[4]   Single-walled carbon nanotube-superconductor entangler:: noise correlations and Einstein-Podolsky-Rosen states [J].
Bouchiat, V ;
Chtchelkatchev, N ;
Feinberg, D ;
Lesovik, GB ;
Martin, T ;
Torrès, J .
NANOTECHNOLOGY, 2003, 14 (01) :77-85
[5]   Spin-dependent Josephson current through double quantum dots and measurement of entangled electron states [J].
Choi, MS ;
Bruder, C ;
Loss, D .
PHYSICAL REVIEW B, 2000, 62 (20) :13569-13572
[6]   Bell inequalities and entanglement in solid-state devices [J].
Chtchelkatchev, NM ;
Blatter, G ;
Lesovik, GB ;
Martin, T .
PHYSICAL REVIEW B, 2002, 66 (16) :1-4
[7]   Origin of hysteresis in a proximity Josephson junction [J].
Courtois, H. ;
Meschke, M. ;
Peltonen, J. T. ;
Pekola, J. P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (06)
[8]   High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation [J].
Das, Anindya ;
Ronen, Yuval ;
Heiblum, Moty ;
Mahalu, Diana ;
Kretinin, Andrey V. ;
Shtrikman, Hadas .
NATURE COMMUNICATIONS, 2012, 3
[9]   Hybrid superconductor-quantum dot devices [J].
De Franceschi, Silvano ;
Kouwenhoven, Leo ;
Schoenenberger, Christian ;
Wernsdorfer, Wolfgang .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :703-711
[10]   Electrically tuned g tensor in an InAs self-assembled quantum dot [J].
Deacon, R. S. ;
Kanai, Y. ;
Takahashi, S. ;
Oiwa, A. ;
Yoshida, K. ;
Shibata, K. ;
Hirakawa, K. ;
Tokura, Y. ;
Tarucha, S. .
PHYSICAL REVIEW B, 2011, 84 (04)