Lukasiewicz Public Announcement Logic

被引:5
作者
Cabrer, Leonardo [1 ]
Rivieccio, Umberto [2 ]
Oscar Rodriguez, Ricardo [3 ]
机构
[1] Vienna Univ Technol, Inst Comp Languages, Vienna, Austria
[2] Univ Fed Rio Grande do Norte, Dept Informat & Appl Math, Natal, RN, Brazil
[3] FCEyN UBA, Dept Comp, Buenos Aires, DF, Argentina
来源
INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, IPMU 2016, PT II | 2016年 / 611卷
基金
奥地利科学基金会;
关键词
Lukasiewicz modal logic; MV-algebras; Public Announcements Logic; Epistemic logics;
D O I
10.1007/978-3-319-40581-0_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we lay a theoretical framework for developing dynamic epistemic logics in a many-valued setting. We consider in particular the logic of Public Announcements, which is one of the simplest and best-known dynamic epistemic systems in the literature. We show how to develop a Public Announcement Logic based on finite-valued Lukasiewicz modal logic. We define our logic through a relational semantics based on many-valued Kripke models, and also introduce an alternative but equivalent algebra-based semantics using MV-algebras endowed with modal operators. We provide a Hilbert-style calculus for our logic and prove completeness with respect to both semantics.
引用
收藏
页码:108 / 122
页数:15
相关论文
共 10 条
[1]  
Baltag A, 1999, Technical Report SEN-R9922
[2]  
Cignoli R., 2000, Trends in Logic-Studia Logica Library, V7
[3]  
Grigolia R. S., 1977, Selected Papers on Lukasiewicz Sentential Calculi, P81
[4]   Extending Aukasiewicz Logics with a Modality: Algebraic Approach to Relational Semantics [J].
Hansoul, Georges ;
Teheux, Bruno .
STUDIA LOGICA, 2013, 101 (03) :505-545
[5]  
Kurz A., 2013, LOG METH COMPUT SCI, V9, P1
[6]   Algebraic semantics and model completeness for Intuitionistic Public Announcement Logic [J].
Ma, Minghui ;
Palmigiano, Alessandra ;
Sadrzadeh, Mehrnoosh .
ANNALS OF PURE AND APPLIED LOGIC, 2014, 165 (04) :963-995
[7]  
Rivieccio U, 2014, P TRENDS LOG 13 LODZ, P199
[8]  
Rivieccio U., 2014, ADV MODAL LOGIC, V10, P459
[9]  
Teheux B., 2008, STUDIA LOGICA, V87, P13
[10]  
Van Benthem J., 2011, LOGICAL DYNAMICS INF