DIRICHLET HEAT KERNEL ESTIMATES FOR FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION

被引:63
作者
Chen, Zhen-Qing [1 ]
Kim, Panki [2 ]
Song, Renming [3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
Symmetric alpha-stable process; gradient operator; heat kernel; transition density; Green function; exit time; Levy system; boundary Harnack inequality; Kato class; BOUNDARY HARNACK PRINCIPLE; HARMONIC-FUNCTIONS;
D O I
10.1214/11-AOP682
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that d >= 2 and alpha is an element of (1, 2). Let D be a bounded C-1,C-1 open set in R-d and b an R-d-valued function on R-d whose components are in a certain Kato class of the rotationally symmetric a-stable process. In this paper, we derive sharp two-sided heat kernel estimates for L-b = Delta(alpha/2) + b . del in D with zero exterior condition. We also obtain the boundary Harnack principle for L-b in D with explicit decay rate.
引用
收藏
页码:2483 / 2538
页数:56
相关论文
共 37 条
[1]  
[Anonymous], 1995, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 1988, PURE APPL MATH
[3]  
[Anonymous], 2005, GRUNDLEHREN MATH WIS
[4]   CONDITIONAL DISTRIBUTIONS AND TIGHTNESS [J].
BILLINGSLEY, P .
ANNALS OF PROBABILITY, 1974, 2 (03) :480-485
[5]  
Blumenthal R. M., 1960, Trans. Amer. Math. Soc, V95, P263, DOI [DOI 10.1090/S0002-9947-1960-0119247-6, 10.1090/S0002-9947-1960-0119247-6]
[6]  
Blumenthal R. M., 1968, Pure and Applied Mathematics, V29
[7]  
Bogdan K, 1997, STUD MATH, V123, P43
[8]  
Bogdan K, 2002, ILLINOIS J MATH, V46, P541
[9]   Estimates of heat kernel of fractional Laplacian perturbed by gradient operators [J].
Bogdan, Krzysztof ;
Jakubowski, Tomasz .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) :179-198
[10]   Estimates of the Green Function for the Fractional Laplacian Perturbed by Gradient [J].
Bogdan, Krzysztof ;
Jakubowski, Tomasz .
POTENTIAL ANALYSIS, 2012, 36 (03) :455-481