Nonlinear generalized equations of motion for multi-link inverted pendulum systems

被引:12
作者
Eltohamy, KG
Kuo, CY
机构
[1] Honeywell Inc, Phoenix, AZ 85036 USA
[2] Arizona State Univ, Dept Aeronaut & Mech Engn, Tempe, AZ 85287 USA
关键词
D O I
10.1080/002077299292245
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the equations of motion for a general multi-link inverted pendulum system are derived. Assumptions previously employed to simplify such formulation are removed. The pendulum system is more general and includes nonlinear friction terms to suit various engineering applications. The generalized equations are first developed in the absolute coordinate system using Lagrange's technique, then a simple linear transformation is proposed to obtain the set of nonlinear equations in the Devanit-Hartenberg coordinate system. The equations of motion for double and triple link inverted pendulum systems are given as examples for such dynamics equations.
引用
收藏
页码:505 / 513
页数:9
相关论文
共 23 条
[1]   Lyapunov Optimal Feedback Control of a Nonlinear Inverted Pendulum [J].
Anderson, M. J. ;
Grantham, W. J. .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1989, 111 (04) :554-558
[2]  
CHUNG JCH, 1986, ISA, P517
[3]   Real time stabilisation of a triple link inverted pendulum using single control input [J].
Eltohamy, KG ;
Kuo, CY .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1997, 144 (05) :498-504
[4]   Nonlinear optimal control of a triple link inverted pendulum with single control input [J].
Eltohamy, KG ;
Kuo, CY .
INTERNATIONAL JOURNAL OF CONTROL, 1998, 69 (02) :239-256
[5]   ATTITUDE-CONTROL OF A TRIPLE INVERTED PENDULUM [J].
FURUTA, K ;
OCHIAI, T ;
ONO, N .
INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (06) :1351-1365
[6]   DIGITAL-CONTROL OF A DOUBLE INVERTED PENDULUM ON AN INCLINED RAIL [J].
FURUTA, K ;
KAJIWARA, H ;
KOSUGE, K .
INTERNATIONAL JOURNAL OF CONTROL, 1980, 32 (05) :907-924
[7]   COMPUTER CONTROL OF A DOUBLE INVERTED PENDULUM [J].
FURUTA, K ;
OKUTANI, T ;
SONE, H .
COMPUTERS & ELECTRICAL ENGINEERING, 1978, 5 (01) :67-84
[8]  
Greenwood DT., 1988, PRINCIPLES DYNAMICS
[9]   IN-THE-LARGE BEHAVIOR OF AN INVERTED PENDULUM WITH LINEAR STABILIZATION [J].
HENDERS, MG ;
SOUDACK, AC .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1992, 27 (01) :129-138
[10]   ON THE CONTROL OF A 2-DIMENSIONAL MULTILINK INVERTED PENDULUM - THE FORM OF THE DYNAMIC EQUATIONS FROM CHOICE OF COORDINATE SYSTEM [J].
LARCOMBE, PJ .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1992, 23 (12) :2265-2289