On the global regularity of subcritical Euler-Poisson equations with pressure

被引:0
作者
Tadmor, Eitan [1 ]
Wei, Dongming
机构
[1] Univ Maryland, Inst Phys Sci & Technol, Dept Math, College Pk, MD 20742 USA
关键词
Euler-Poisson equations; Riemann invariants; critical thresholds; global regularity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the one-dimensional Euler-Poisson system driven by the Poisson forcing together with the usual gamma-law pressure, gamma >= 1, admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2 x 2 p-system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann invariants and density crosses an intrinsic critical threshold.
引用
收藏
页码:757 / 769
页数:13
相关论文
共 16 条