共 43 条
Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers
被引:99
作者:
Alp, Gulce
[1
]
Murat, Sema
[2
]
Yilmaz, Burak
[3
]
机构:
[1] Okan Univ, Fac Dent, Dept Prosthodont, TR-34959 Istanbul, Turkey
[2] Ankara Univ, Dept Prosthodont, Fac Dent, Ankara, Turkey
[3] Ohio State Univ, Coll Dent, Div Restorat Sci & Prosthodont, Columbus, OH 43210 USA
来源:
JOURNAL OF PROSTHODONTICS-IMPLANT ESTHETIC AND RECONSTRUCTIVE DENTISTRY
|
2019年
/
28卷
/
02期
关键词:
Prepolymerized polymers;
poly(methyl methacrylate);
three-point bending;
LOAD-BEARING CAPACITY;
MECHANICAL-PROPERTIES;
PROVISIONAL CROWN;
FRACTURE STRENGTH;
BRIDGE MATERIALS;
IN-VITRO;
POLYETHERETHERKETONE;
COLOR;
D O I:
10.1111/jopr.12755
中图分类号:
R78 [口腔科学];
学科分类号:
1003 ;
摘要:
Purpose To compare the flexural strength of different computer-aided design/computer-aided manufacturing (CAD/CAM) poly(methyl methacrylate)-based (PMMA) polymers and conventional interim resin materials after thermocycling. Materials and Methods Rectangular-shaped specimens (n = 15, for each material) (25 x 2 x 2 mm(3)) were fabricated from 3 CAD/CAM PMMA-based polymers (Telio CAD [T]; M-PM-Disc [M]; Polident-PMMA [P]), 1 bis-acrylate composite resin (Protemp 4 [PT]), and 1 conventional PMMA (ArtConcept Artegral Dentine [C]) according to ISO 10477:2004 Standards (Dentistry-Polymer-Based Crown and Bridge Materials). The specimens were subjected to 10,000 thermocycles (5 to 55 degrees C). Three-point flexural strength of the specimens was tested in a universal testing machine at a 1.0 mm/min crosshead speed, and the flexural strength data (sigma) were calculated (MPa). The flexural strength values were statistically analyzed using 1-way ANOVA, and Tukey HSD post-hoc test for multiple comparisons (alpha = 0.05). Results Flexural strength values ranged between 66.1 +/- 13.1 and 131.9 +/- 19.8 MPa. There were significant differences among the flexural strengths of tested materials, except for between T and P CAD/CAM PMMA-based polymers (p > 0.05). CAD/CAM PMMA-based polymer M had the highest flexural strength and conventional PMMA had the lowest (p < 0.05). CAD/CAM PMMA-based T and P polymers had significantly higher flexural strength than the bis-acrylate composite resin (p < 0.05), and conventional PMMA (p < 0.0001), and significantly lower flexural strength compared to CAD/CAM PMMA-based M (p < 0.05). Conclusions The flexural strength of CAD/CAM PMMA-based polymers was greater than the flexural strength of bis-acrylate composite resin, which had a greater flexural strength compared to conventional PMMA resin.
引用
收藏
页码:E491 / E495
页数:5
相关论文