BECKNER LOGARITHMIC UNCERTAINTY PRINCIPLE FOR THE RIEMANN-LIOUVILLE OPERATOR

被引:17
作者
Amri, Besma [1 ]
Rachdi, Lakhdar T. [1 ]
机构
[1] Fac Sci Tunis, Dept Math, Tunis 2092 2, Tunisia
关键词
Riemann-Liouville operator; Fourier transform; B-Riesz potential; Stein-Weiss inequality; Pitt's inequality; logarithmic uncertainty principle;
D O I
10.1142/S0129167X13500705
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we establish the Stein-Weiss inequality for the B-Riesz potential generated by the Riemann-Liouville operator. Next, we prove the Pitt's and Beckner logarithmic inequalities related to the connected Fourier transform.
引用
收藏
页数:29
相关论文
共 24 条
[1]  
[Anonymous], COLLECTED WORKS A BE
[2]  
Baccar C, 2009, BULL MATH ANAL APPL, V1, P16
[3]  
Baccar C., 2008, Commun. Math. Anal, V5, P65
[4]  
Baccar C., 2006, Int. J. Math. Math. Sci., V2006, P1
[5]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905
[6]  
Beurling A., 1989, Contemporary Mathematicians, V2
[7]  
Bonami A, 2003, REV MAT IBEROAM, V19, P23
[8]  
COWLING M, 1983, LECT NOTES MATH, V992, P443
[9]  
Erdely A., 1956, ASYMPTOTIC EXPANSION
[10]  
Erdely A., 1954, TABLES INTEGRAL TRAN, VII