Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric spacetimes

被引:110
|
作者
Hackmann, Eva [1 ]
Kagramanova, Valeria [2 ]
Kunz, Jutta [2 ]
Laemmerzahl, Claus [1 ]
机构
[1] Univ Bremen, ZARM, D-28359 Bremen, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
来源
PHYSICAL REVIEW D | 2008年 / 78卷 / 12期
关键词
D O I
10.1103/PhysRevD.78.124018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The complete analytical solutions of the geodesic equation of massive test particles in higher dimensional Schwarzschild, Schwarzschild-(anti)de Sitter, Reissner-Nordstrom and Reissner-Nordstrom-(anti)de Sitter spacetimes are presented. Using the Jacobi inversion problem restricted to the theta divisor the explicit solution is given in terms of Kleinian sigma functions. The derived orbits depend on the structure of the roots of the characteristic polynomials which depend on the particle's energy and angular momentum, on the mass and the charge of the gravitational source, and the cosmological constant. We discuss the general structure of the orbits and show that due to the specific dimension-independent form of the angular momentum and the cosmological force a rich variety of orbits can emerge only in four and five dimensions. We present explicit analytical solutions for orbits up to 11 dimensions. A particular feature of Reissner-Nordstrom spacetimes is that bound and escape orbits traverse through different universes.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric spacetimes (vo 78, art no 124018, 2008)
    Hackmann, Eva
    Kagramanova, Valeria
    Kunz, Jutta
    Lammerzahl, Claus
    PHYSICAL REVIEW D, 2009, 79 (02):
  • [2] Bilocal geodesic operators in static spherically-symmetric spacetimes
    Serbenta, Julius
    Korzynski, Mikolaj
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (15)
  • [3] Symmetry analysis of wave equation on static spherically symmetric spacetimes with higher symmetries
    Azad, H.
    Al-Dweik, Ahmad Y.
    Ghanam, R.
    Mustafa, M. T.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
  • [4] The Penrose Inequality in Higher Dimensional Spherically Symmetric Spacetimes
    Hidayat, Alam A.
    Gunara, Bobby E.
    Akbar, Fiki T.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS 2014), 2015, 1677
  • [5] Exact gravitational lens equation in spherically symmetric and static spacetimes
    Perlick, V
    PHYSICAL REVIEW D, 2004, 69 (06): : 10
  • [6] Noether symmetries and conservation laws of wave equation on static spherically symmetric spacetimes with higher symmetries
    Mustafa, T.
    Al-Dweik, Ahmad Y.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 23 (1-3) : 141 - 152
  • [7] GLOBALLY MAXIMAL TIMELIKE GEODESICS IN STATIC SPHERICALLY SYMMETRIC SPACETIMES: RADIAL GEODESICS IN STATIC SPACETIMES AND ARBITRARY GEODESIC CURVES IN ULTRASTATIC SPACETIMES
    Sokolowski, Leszek M.
    Golda, Zdzislaw A.
    ACTA PHYSICA POLONICA B, 2019, 50 (05): : 885 - 909
  • [8] On spacetimes dual to spherically symmetric solutions
    Dadhich, N
    Patel, LK
    PRAMANA-JOURNAL OF PHYSICS, 1999, 52 (04): : 359 - 367
  • [9] On spacetimes dual to spherically symmetric solutions
    Naresh Dadhich
    L. K. Patel
    Pramana, 1999, 52 : 359 - 367
  • [10] Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss-Bonnet Gravity
    Bajardi, Francesco
    Dialektopoulos, Konstantinos F.
    Capozziello, Salvatore
    SYMMETRY-BASEL, 2020, 12 (03):