Plasmonic nanoparticle-based expansion microscopy with surface-enhanced Raman and dark-field spectroscopic imaging

被引:14
作者
Artur, Camille G. [1 ]
Womack, Tasha [2 ]
Zhao, Fusheng [1 ]
Eriksen, Jason L. [2 ]
Mayerich, David [1 ]
Shih, Wei-Chuan [1 ,3 ,4 ,5 ]
机构
[1] Univ Houston, Dept Elect & Comp Engn, 4800 Calhoun Rd, Houston, TX 77004 USA
[2] Univ Houston, Dept Pharmacol & Pharmaceut Sci, Coll Pharm, Houston, TX 77004 USA
[3] Univ Houston, Dept Biomed Engn, 4800 Calhoun Rd, Houston, TX 77004 USA
[4] Univ Houston, Program Mat Sci & Engn, 4800 Calhoun Rd, Houston, TX 77004 USA
[5] Univ Houston, Dept Chem, 4800 Calhoun Rd, Houston, TX 77004 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
GOLD NANOPARTICLES; SCATTERING; PROTEIN; NEUN; MICROSPECTROSCOPY; ABSORPTION; ANTIGEN; MARKER; TISSUE; PROBES;
D O I
10.1364/BOE.9.000603
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence-based expansion microscopy (ExM) is a new technique which can yield nanoscale resolution of biological specimen on a conventional fluorescence microscope through physical sample expansion up to 20 times its original dimensions while preserving structural information. It however inherits known issues of fluorescence microscopy such as photostability and multiplexing capabilities, as well as an ExM-specific issue in signal intensity reduction due to a dilution effect after expansion. To address these issues, we propose using antigen-targeting plasmonic nanoparticle labels which can be imaged using surface-enhanced Raman scattering spectroscopy (SERS) and dark-field spectroscopy. We demonstrate that the nanoparticles enable multimodal imaging: bright-field, dark-field and SERS, with excellent photostability, contrast enhancement and brightness. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:603 / 615
页数:13
相关论文
共 46 条
[1]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[2]   EBL-Based Fabrication and Different Modeling Approaches for Nanoporous Gold Nanodisks [J].
Arnob, Md Masud Parvez ;
Zhao, Fusheng ;
Li, Jingting ;
Shih, Wei-Chuan .
ACS PHOTONICS, 2017, 4 (08) :1870-1878
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[5]   Mapping the plasmon resonances of metallic nanoantennas [J].
Bryant, Garnett W. ;
De Abajo, F. Javier Garcia ;
Aizpurua, Javier .
NANO LETTERS, 2008, 8 (02) :631-636
[6]  
Chang JB, 2017, NAT METHODS, V14, P593, DOI [10.1038/NMETH.4261, 10.1038/nmeth.4261]
[7]   Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: Evidence of near-field coupling [J].
Chen, Chi-Fan ;
Tzeng, Shien-Der ;
Chen, Hung-Ying ;
Lin, Kuan-Jiuh ;
Gwo, Shangjr .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (03) :824-+
[8]   Expansion microscopy [J].
Chen, Fei ;
Tillberg, Paul W. ;
Boyden, Edward S. .
SCIENCE, 2015, 347 (6221) :543-548
[9]   Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents [J].
Chen, J ;
Saeki, F ;
Wiley, BJ ;
Cang, H ;
Cobb, MJ ;
Li, ZY ;
Au, L ;
Zhang, H ;
Kimmey, MB ;
Li, XD ;
Xia, YN .
NANO LETTERS, 2005, 5 (03) :473-477
[10]   Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer [J].
El-Sayed, IH ;
Huang, XH ;
El-Sayed, MA .
NANO LETTERS, 2005, 5 (05) :829-834