XRD, HRTEM and magnetic properties of mixed spinel nanocrystalline Ni-Zn-Cu-ferrite

被引:94
作者
Modak, S. [1 ]
Ammar, M. [2 ]
Mazaleyrat, F. [2 ]
Das, S. [3 ]
Chakrabarti, P. K. [1 ]
机构
[1] Univ Burdwan, Dept Phys, Solid State Res Lab, Burdwan 713104, W Bengal, India
[2] Ecole Normale Super, SATIE, CNRS, UMR8029, F-94235 Cachan, France
[3] Jadavpur Univ, Dept Phys, Kolkata 700032, India
关键词
Chemical synthesis; X-ray diffraction; Scanning and transmission electron microscopy; Magnetic measurements; MOSSBAUER; GEL;
D O I
10.1016/j.jallcom.2008.06.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocrystalline Ni0.4Zn0.4Cu0.2Fe2O4 Samples with different particle sizes are prepared by simple co-precipitation method. The mixed spinel phases of the nanocrystalline materials have been confirmed by X-ray diffractograms (XRD). The sizes of the nanoparticles are estimated from the (3 1 1) peaks of the XRD patterns using Debye-Sherrer equation and are lying in the range of 7-32 nm. High-resolution TEM observations also support the findings obtained from XRD. Specific saturation magnetizations measured by vibrating sample magnetometer (VSM) are found to increase steadily with the increase of average particle size. Nature of variations of the magnetization curves of the different particle sizes samples are of typical superparamagnetic behaviours up to 16 nm beyond which ferrimagnetic ordered particles are dominating over superparamagnetic particles. The coercive field for a sample of particle size 12 rim is interestingly low (87 A/m) where the saturation magnetization is also moderately high (similar to 50 A m(2)/kg). The coercive fields of the different samples obtained from low frequency hysteresis loops observations show that even in case of sample with lowest particle size, a small fraction of particles are not relaxed within the experimental time window. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 19
页数:5
相关论文
共 15 条
[1]  
BERKOWITZ AE, 1999, J MAGN MAGN MATER, V591, P196
[2]   Magnetic characterization of nanocrystalline Ni-Zn ferrite powder prepared by the glyoxylate precursor method [J].
Caizer, C ;
Stefanescu, M .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (23) :3035-3040
[3]   Magnetic and hyperfine properties of nanocrystalline Ni0.2Zn0.6Cu0.2Fe2O4 prepared by a chemical route [J].
Chakrabarti, P. K. ;
Nath, B. K. ;
Brahma, S. ;
Das, S. ;
Goswami, K. ;
Kumar, U. ;
Mukhopadhyay, P. K. ;
Das, D. ;
Ammar, M. ;
Mazaleyrat, F. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (22) :5253-5267
[4]   Magnetic properties of nanostructured ferrimagnetic zinc ferrite [J].
Chinnasamy, CN ;
Narayanasamy, A ;
Ponpandian, N ;
Chattopadhyay, K ;
Guérault, H ;
Greneche, JM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (35) :7795-7805
[5]  
DORMANN JL, 1992, MAGNETIC PROPERTIES
[6]  
Hafeli U., 1997, Scientific and Clinical Applications of Magnetic Carriers
[7]   Structure and Mossbauer studies of Cu-doped Ni-Zn ferrite [J].
Kim, CS ;
Kim, WC ;
An, SY ;
Lee, SW .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2000, 215 :213-216
[8]  
Kim W.C, 2001, J MAGN MAGN MATER, V1418, P226
[9]   Mossbauer Studies on Nanoparticles of Zinc Substituted Magnesium Ferrite [J].
Nath, B. K. ;
Chakrabarti, P. K. ;
Das, S. ;
Kumar, U. ;
Mukhopadhyay, P. K. ;
Das, D. .
JOURNAL OF SURFACE SCIENCE AND TECHNOLOGY, 2005, 21 (3-4) :169-182
[10]   Mossbauer, X-ray diffraction and AC susceptibility studies on nanoparticles of zinc substituted magnesium ferrite [J].
Nath, BK ;
Chakrabarti, PK ;
Das, S ;
Kumar, U ;
Mukhopadhyay, PK ;
Das, D .
EUROPEAN PHYSICAL JOURNAL B, 2004, 39 (04) :417-425