Two limit cycles in three-dimensional Lotka-Volterra systems

被引:46
作者
Lu, ZY [1 ]
Luo, Y
机构
[1] Wenzhou Normal Coll, Inst Syst Sci, Wenzhou 325000, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
关键词
Lotka-Volterra systems; center manifold; Hopf bifurcation; limit cycles;
D O I
10.1016/S0898-1221(02)00129-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Among the six classes of Zeeman's classification for three-dimensional Lotka-Volterra competitive systems with limit cycles, besides the heteroclinic cycle case (Case 27), we construct in three cases without heteroclinic cycle (Cases 26, 28, 29) two limit cycles. Our construction gives a partial answer to Hofbauer and So's problem to these systems. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 13 条
[1]  
Andronov A.A., 1973, THEORY BIFURCATION D
[2]  
Carr J, 1982, Applications of centre manifold theory
[3]   ASYMPTOTIC BEHAVIORS IN THE DYNAMICS OF COMPETING SPECIES [J].
COSTE, J ;
PEYRAUD, J ;
COULLET, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 36 (03) :516-543
[4]  
Glendinning P., 1994, STABILITY INSTABILIT
[5]   Systems of differential equations which are competitive or cooperative: III. Competing species [J].
Hirsch, Morris W. .
NONLINEARITY, 1988, 1 (01) :51-71
[7]   MULTIPLE LIMIT-CYCLES FOR 3-DIMENSIONAL LOTKA-VOLTERRA EQUATIONS [J].
HOFBAUER, J ;
SO, JWH .
APPLIED MATHEMATICS LETTERS, 1994, 7 (06) :65-70
[8]  
Hofbauer J, 1998, Evol. Games Popul. Dyn., DOI DOI 10.1017/CBO9781139173179
[9]  
LU Z, ALGORITHM REAL ROOT
[10]   Three-dimensional competitive Lotka-Volterra systems with no periodic orbits [J].
Van den Driessche, P ;
Zeeman, ML .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (01) :227-234