Artificial neural network approach for microhardness prediction of eight component FeCoNiCrMnVAlNb eutectic high entropy alloys

被引:32
作者
Jain, Reliance [1 ]
Dewangan, Sheetal Kumar [1 ]
Kumar, Vinod [2 ]
Samal, Sumanta [1 ]
机构
[1] Indian Inst Technol, Discipline Met Engn & Mat Sci, Indore, Madhya Pradesh, India
[2] Indian Inst Technol Indore, Ctr Adv Elect CAE, Indore, Madhya Pradesh, India
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2020年 / 797卷
关键词
Eutectic high entropy alloys (EHEAs); Thermodynamic simulation; Microhardness; ANN; Solidification; MECHANICAL-PROPERTIES; MICROSTRUCTURE; TEXTURE; TEMPERATURE; COMPOSITES; STABILITY; EVOLUTION; HARDNESS; GROWTH;
D O I
10.1016/j.msea.2020.140059
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For the first time, we report here that higher-order eight component Fe32.5-xCo10Ni25Cr15Mn5V10Al2.5Nbx = 5, 7.5, 10, and 12.5 at. %) eutectic high entropy alloys (EHEAs) are designed and developed by integrating thermodynamic simulation approach and non-equilibrium solidification processing technique. The developed EHEAs consist of FeCoNiCr-rich FCC solid solution phase and eutectics mixture between FCC solid solution phase and the Co2Nb-type Laves phase. The predicted microhardness of EHEAs for x = 7.5% and x = 10% by using artificial neural networks (ANNs) modeling is 501 H V, and 618 H V, respectively, which is in good agreement with experimentally measured values having less than 5% error.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Use of artificial neural network for prediction of mechanical properties of α-Al2O3 particulate-reinforced Al-Si10Mg alloy composites prepared by using stir casting process [J].
Altinkok, Necat .
JOURNAL OF COMPOSITE MATERIALS, 2006, 40 (09) :779-796
[2]   Effect of temperature on microstructure and texture evolutions during uniaxial compression of commercially pure titanium [J].
Bishoyi, B. D. ;
Sabat, R. K. ;
Sahoo, S. K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 718 :398-411
[3]   Effect of temperature on microstructure and texture evolution during uniaxial tension of commercially pure titanium [J].
Bishoyi, B. D. ;
Sabat, R. K. ;
Sahu, J. ;
Sahoo, S. K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 703 :399-412
[4]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[5]   Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning [J].
Chang, Yao-Jen ;
Jui, Chia-Yung ;
Lee, Wen-Jay ;
Yeh, An-Chou .
JOM, 2019, 71 (10) :3433-3442
[6]  
Chen S., 2018, ENTROPY, V20
[7]   Microstructure exploration and an artificial neural network approach for hardness prediction in AlCrFeMnNiWx High-Entropy Alloys [J].
Dewangan, Sheetal Kumar ;
Samal, Sumanta ;
Kumar, Vinod .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 823
[8]  
Glicksman ME, 2011, PRINCIPLES OF SOLIDIFICATION: AN INTRODUCTION TO MODERN CASTING AND CRYSTAL GROWTH CONCEPTS, P1, DOI 10.1007/978-1-4419-7344-3
[9]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[10]   Database on the mechanical properties of high entropy alloys and complex concentrated alloys [J].
Gorsse, S. ;
Nguyen, M. H. ;
Senkov, O. N. ;
Miracle, D. B. .
DATA IN BRIEF, 2018, 21 :2664-2678