Parameter estimation for operator scaling random fields

被引:7
作者
Lim, C. Y. [1 ]
Meerschaert, M. M. [1 ]
Scheffler, H. -P. [2 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Univ Siegen, Fachbereich Math, D-57068 Siegen, Germany
基金
美国国家科学基金会;
关键词
Random field; Self-similar; Operator scaling; Hurst index; REGRESSION;
D O I
10.1016/j.jmva.2013.09.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Operator scaling random fields are useful for modeling physical phenomena with different scaling properties in each coordinate. This paper develops a general parameter estimation method for such fields which allows an arbitrary set of scaling axes. The method is based on a new approach to nonlinear regression with errors whose mean is not zero. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 183
页数:12
相关论文
共 50 条
[41]   Polyadic random fields [J].
Anatoliy Malyarenko ;
Martin Ostoja-Starzewski .
Zeitschrift für angewandte Mathematik und Physik, 2022, 73
[42]   Transforming random elements and shifting random fields [J].
Thorisson, H .
ANNALS OF PROBABILITY, 1996, 24 (04) :2057-2064
[43]   Level Set Estimation of Spatial-Temporally Correlated Random Fields With Active Sparse Sensing [J].
Wang, Zuoen ;
Yang, Jing ;
Wu, Jingxian .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2017, 53 (02) :862-876
[44]   The parameter sensitivity of random forests [J].
Huang, Barbara F. F. ;
Boutros, Paul C. .
BMC BIOINFORMATICS, 2016, 17
[45]   The Paulsen Problem, Continuous Operator Scaling, and Smoothed Analysis [J].
Kwok, Tsz Chiu ;
Lau, Lap Chi ;
Lee, Yin Tat ;
Ramachandran, Akshay .
STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, :182-189
[46]   Inducing features of random fields [J].
DellaPietra, S ;
DellaPietra, V ;
Lafferty, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (04) :380-393
[47]   Extrapolation of stable random fields [J].
Karcher, Wolfgang ;
Shmileva, Elena ;
Spodarev, Evgeny .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 115 :516-536
[48]   Distance covariance for random fields [J].
Matsui, Muneya ;
Mikosch, Thomas ;
Roozegar, Rasool ;
Tafakori, Laleh .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 150 :280-322
[49]   Regularly varying random fields [J].
Wu, Lifan ;
Samorodnitsky, Gennady .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) :4470-4492
[50]   Martingale approximations for random fields [J].
Magda, Peligrad ;
Zhang, Na .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23