Parameter estimation for operator scaling random fields

被引:7
作者
Lim, C. Y. [1 ]
Meerschaert, M. M. [1 ]
Scheffler, H. -P. [2 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Univ Siegen, Fachbereich Math, D-57068 Siegen, Germany
基金
美国国家科学基金会;
关键词
Random field; Self-similar; Operator scaling; Hurst index; REGRESSION;
D O I
10.1016/j.jmva.2013.09.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Operator scaling random fields are useful for modeling physical phenomena with different scaling properties in each coordinate. This paper develops a general parameter estimation method for such fields which allows an arbitrary set of scaling axes. The method is based on a new approach to nonlinear regression with errors whose mean is not zero. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 183
页数:12
相关论文
共 50 条
[31]   Automatic Pain Intensity Estimation with Heteroscedastic Conditional Ordinal Random Fields [J].
Rudovic, Ognjen ;
Pavlovic, Vladimir ;
Pantic, Maja .
ADVANCES IN VISUAL COMPUTING, PT II, 2013, 8034 :234-243
[32]   Parameter estimation of the functional linear model with scalar response with responses missing at random [J].
Febrero-Bande, Manuel ;
Galeano, Pedro ;
Gonzalez-Manteiga, Wenceslao .
FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, :105-111
[33]   PARAMETER-ESTIMATION IN A REGRESSION-MODEL WITH RANDOM COEFFICIENT AUTOREGRESSIVE ERRORS [J].
HWANG, SY ;
BASAWA, IV .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 36 (01) :57-67
[34]   ESTIMATION FOR DISCRETE MARKOV RANDOM-FIELDS OBSERVED IN GAUSSIAN-NOISE [J].
ELLIOTT, RJ ;
AGGOUN, L .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) :1600-1603
[35]   CRAMER TYPE MODERATE DEVIATIONS FOR RANDOM FIELDS [J].
Beknazaryan, Aleksandr ;
Sang, Hailin ;
Xiao, Yimin .
JOURNAL OF APPLIED PROBABILITY, 2019, 56 (01) :223-245
[36]   Multivariate frequency polygon for stationary random fields [J].
Carbon, Michel ;
Duchesne, Thierry .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2024, 76 (02) :263-287
[37]   Joint estimation of heterogeneous exponential Markov Random Fields through an approximate likelihood inference [J].
Liu, Qingyang ;
Zhang, Yuping .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 209 :252-266
[38]   Linear least squares estimation of regression models for two-dimensional random fields [J].
Cohen, G ;
Francos, JM .
JOURNAL OF MULTIVARIATE ANALYSIS, 2002, 82 (02) :431-444
[39]   MAP ESTIMATION USING MEASURE CHANGE FOR CONTINUOUS-STATE RANDOM-FIELDS [J].
ELLIOTT, RJ ;
AGGOUN, L .
SYSTEMS & CONTROL LETTERS, 1995, 26 (04) :239-244
[40]   Polyadic random fields [J].
Malyarenko, Anatoliy ;
Ostoja-Starzewski, Martin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05)