Parameter estimation for operator scaling random fields

被引:7
作者
Lim, C. Y. [1 ]
Meerschaert, M. M. [1 ]
Scheffler, H. -P. [2 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
[2] Univ Siegen, Fachbereich Math, D-57068 Siegen, Germany
基金
美国国家科学基金会;
关键词
Random field; Self-similar; Operator scaling; Hurst index; REGRESSION;
D O I
10.1016/j.jmva.2013.09.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Operator scaling random fields are useful for modeling physical phenomena with different scaling properties in each coordinate. This paper develops a general parameter estimation method for such fields which allows an arbitrary set of scaling axes. The method is based on a new approach to nonlinear regression with errors whose mean is not zero. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:172 / 183
页数:12
相关论文
共 50 条
[21]   Estimation of parameters of homogeneous gaussian random fields [J].
Kozachenko Yu.V. ;
Kurchenko O.O. .
Ukrainian Mathematical Journal, 2000, 52 (8) :1239-1246
[22]   KERNEL DENSITY-ESTIMATION ON RANDOM-FIELDS [J].
TRAN, LT .
JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 34 (01) :37-53
[23]   Estimation Problems for Periodically Correlated Isotropic Random FieldsEstimation Problems for Random Fields [J].
Iryna Dubovetska ;
Oleksandr Masyutka ;
Mikhail Moklyachuk .
Methodology and Computing in Applied Probability, 2015, 17 :41-57
[24]   Tuning parameter selection for nonparametric derivative estimation in random design [J].
Liu, Sisheng ;
Charnigo, Richard .
STATISTICS, 2023, 57 (06) :1402-1425
[25]   Singularity among selfsimilar Gaussian random fields with different scaling parameters and others [J].
Ma, Chunsheng .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (06) :996-1005
[26]   Spectral Analysis of Matrix Scaling and Operator Scaling [J].
Kwok, Tsz Chiu ;
Lau, Lap Chi ;
Ramachandran, Akshay .
2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, :1184-1204
[27]   SPECTRAL ANALYSIS OF MATRIX SCALING AND OPERATOR SCALING [J].
Kwok, Tsz Chiu ;
Lau, Lap Chi ;
Ramachandran, Akshay .
SIAM JOURNAL ON COMPUTING, 2021, 50 (03) :1034-1102
[28]   Information geometry of operator scaling [J].
Matsuda, Takeru ;
Soma, Tasuku .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 649 :240-267
[29]   Operator Scaling with Specified Marginals [J].
Franks, Cole .
STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, :190-203
[30]   Spatio-temporal random fields: compressible representation and distributed estimation [J].
Piatkowski, Nico ;
Lee, Sangkyun ;
Morik, Katharina .
MACHINE LEARNING, 2013, 93 (01) :115-139