Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes

被引:205
作者
Andersson, Jesper L. R. [1 ]
Sotiropoulos, Stamatios N. [1 ]
机构
[1] Univ Oxford, FMRIB Ctr, Oxford OX1 2JD, England
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Diffusion MRI; Gaussian process; Non-parametric representation; Multi-shell; RESOLUTION;
D O I
10.1016/j.neuroimage.2015.07.067
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predicts what to expect. In this paper we describe a novel way to represent and make predictions about diffusion MRI data. It is based on a Gaussian process on one or several spheres similar to the Geostatistical method of "Kriging". We present a choice of covariance function that allows us to accurately predict the signal even from voxels with complex fibre patterns. For multi-shell data (multiple non-zero b-values) the covariance function extends across the shells which means that data from one shell is used when making predictions for another shell. (C) 2015 The Authors. Published by Elsevier Inc.
引用
收藏
页码:166 / 176
页数:11
相关论文
共 31 条
[1]   Reconstruction of the Orientation Distribution Function in Single- and Multiple-Shell q-Ball Imaging Within Constant Solid Angle [J].
Aganj, Iman ;
Lenglet, Christophe ;
Sapiro, Guillermo ;
Yacoub, Essa ;
Ugurbil, Kamil ;
Harel, Noam .
MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (02) :554-566
[2]  
Alexander A. L., 2006, MAGN RESON MED, V38, P1016
[3]  
Andersson J., 2012, P 20 ANN M ISMRM MEL, P2426
[4]  
Andersson J.L.R., 2014, INT SOC MAGN RES MED, P2567
[5]  
Andersson J.L. R., 2011, Diffusion MRI: Theory, Methods, and Applications, P285, DOI [10.1093/med/9780195369779.003.0017., DOI 10.1093/MED/9780195369779.003.0017]
[6]   A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI [J].
Andersson, JLR ;
Skare, S .
NEUROIMAGE, 2002, 16 (01) :177-199
[7]  
[Anonymous], 2006, Multivariate Geostatistics: An Introduction With Applications
[8]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[9]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088
[10]   RESTORE: Robust estimation of tensors by outlier rejection [J].
Chang, LC ;
Jones, DK ;
Pierpaoli, C .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (05) :1088-1095