Behavioral Power Amplifier Modeling Using the LASSO

被引:18
作者
Wisell, David [1 ,2 ]
Jalden, Joakim [3 ]
Handel, Peter [2 ,3 ]
机构
[1] Ericcson AB, SE-16480 Stockholm, Sweden
[2] Univ Gavle, Ctr RF Measurement Technol, SE-80176 Gavle, Sweden
[3] Royal Inst Technol, Signal Proc Lab, SE-10044 Stockholm, Sweden
来源
2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5 | 2008年
关键词
Behavioral modeling; LASSO; measurement system; power amplifier; regularization;
D O I
10.1109/IMTC.2008.4547349
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we use regularization; in the form of the LASSO, as identification procedure in order to find the parameters of the parallel Hammerstein model for behavioral power amplifier modeling. It is shown that the LASSO chooses a subset of the parameters of the parallel Hammerstein model in a systematic way and thereby reduces the number of model parameters while maintaining the performance. The values of the parameters are also smaller than when the ordinary least-squares algorithm is used for the parameter extraction since the LASSO imposes a limit on the L1-norm of the parameters Thus, the problem with larger and sometimes very large, parameters that is often encountered in behavioral power amplifier modeling is avoided Experimental results from measurements on a power amplifier intended for the 3G WCDMA system is provided to support the theory.
引用
收藏
页码:1864 / +
页数:2
相关论文
共 50 条
  • [31] Dynamic Modeling and Control of TL Power Amplifier Using Controlled Source
    Wang, Jun
    Xu, Longxiang
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 2146 - 2150
  • [32] RF Power Amplifier Modeling Using Polynomials with IIR Bases Functions
    Rey, Claudio
    Masood, Mir
    Staudinger, Joseph
    Kenney, Steve
    RWS: 2009 IEEE RADIO AND WIRELESS SYMPOSIUM, 2009, : 39 - +
  • [33] Behavioral Model of Power Amplifier Using a Discrete-Time Impulse Response Representation
    Wang, Yudie
    Yang, Mengsu
    Brazil, Thomas J.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (08) : 625 - 627
  • [34] Power Amplifier Behavioral Model Dimension Pruning Using Sparse Principal Component Analysis
    Yao, Yao
    He, Songbai
    Li, Mingyu
    Zhu, Mingdong
    2018 IEEE 18TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2018, : 621 - 625
  • [35] Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral Sciences
    McNeish, Daniel M.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2015, 50 (05) : 471 - 484
  • [36] Interrelation Analysis of Behavioral Measures of Power Amplifier Nonlinearity
    Lei, Yiming
    Zeng, Liaoyuan
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2015, 322 : 899 - 905
  • [37] Inverse Class-F Doherty Power Amplifier Behavioral Modeling with Generalized Two-Box Cascaded Nonlinear Behavioral Model
    Xu, Gaoming
    Liu, Taijun
    Ye, Yan
    Huang, Jifu
    2016 IEEE INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS: APPLICATIONS AND STUDENT INNOVATION COMPETITION (IWEM), 2016,
  • [38] Spindle thermal error robust modeling using LASSO and LS-SVM
    Tan, Feng
    Yin, Ming
    Wang, Lin
    Yin, Guofu
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (5-8) : 2861 - 2874
  • [39] A tutorial on the Lasso approach to sparse modeling
    Rasmussen, Morten Arendt
    Bro, Rasmus
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 119 : 21 - 31
  • [40] A Comparison of Surrogate Behavioral Models for Power Amplifier Linearization under High Sparse Data
    Alejandro Galaviz-Aguilar, Jose
    Vargas-Rosales, Cesar
    Ricardo Cardenas-Valdez, Jose
    Santiago Aguila-Torres, Daniel
    Flores-Hernandez, Leonardo
    SENSORS, 2022, 22 (19)