Uniform Additivity in Classical and Quantum Information

被引:30
作者
Cross, Andrew [1 ]
Li, Ke [1 ,2 ,3 ]
Smith, Graeme [4 ,5 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[3] CALTECH, IQIM, Pasadena, CA 91125 USA
[4] Univ Colorado, JILA, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
CAPACITY; CHANNEL; SUPERACTIVATION; COMMUNICATION; ENTROPY; STATES;
D O I
10.1103/PhysRevLett.118.040501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Information theory quantifies the optimal rates of resource interconversions, usually in terms of entropies. However, nonadditivity often makes evaluating entropic formulas intractable. In a few auspicious cases, additivity allows a full characterization of optimal rates. We study uniform additivity of formulas, which is easily evaluated and captures all known additive quantum formulas. Our complete characterization of uniform additivity exposes an intriguing new additive quantity and identifies a remarkable coincidence-the classical and quantum uniformly additive functions with one auxiliary variable are identical.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Information Geometric Solution to Additivity of Amplitude-Damping Quantum Channel [J].
Gyongyosi, Laszlo ;
Imre, Sandor .
QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC): THE TENTH INTERNATIONAL CONFERENCE, 2011, 1363
[22]   ON THE SECURITY OF DECOHERENCE-FREE SUBSPACES AND SUBSYSTEMS FOR CLASSICAL INFORMATION CONVEYING THROUGH QUANTUM CHANNELS [J].
Guedes, Elloa B. ;
De Assis, Francisco M. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (02)
[23]   Non-Asymptotic Classical Data Compression With Quantum Side Information [J].
Cheng, Hao-Chung ;
Hanson, Eric P. ;
Datta, Nilanjana ;
Hsieh, Min-Hsiu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (02) :902-930
[24]   Quantum Channels With Polytopic Images and Image Additivity [J].
Fukuda, Motohisa ;
Nechita, Ion ;
Wolf, Michael M. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (04) :1851-1859
[25]   Exponential Separation of Quantum Communication and Classical Information [J].
Anshu, Anurag ;
Touchette, Dave ;
Yao, Penghui ;
Yu, Nengkun .
STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, :277-288
[26]   Codes for Simultaneous Transmission of Quantum and Classical Information [J].
Grassl, Markus ;
Lu, Sirui ;
Zeng, Bei .
2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, :1718-1722
[27]   Classical and quantum parts of conditional mutual information for open quantum systems [J].
Huang, Zhiqiang ;
Guo, Xiao-Kan .
PHYSICAL REVIEW A, 2022, 106 (04)
[28]   Transmission of classical and quantum information through a quantum memory channel with damping [J].
D'Arrigo, A. ;
Benenti, G. ;
Falci, G. .
EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (06)
[29]   Quantifying information scrambling via classical shadow tomography on programmable quantum simulators [J].
McGinley, Max ;
Leontica, Sebastian ;
Garratt, Samuel J. ;
Jovanovic, Jovan ;
Simon, Steven H. .
PHYSICAL REVIEW A, 2022, 106 (01)
[30]   Simultaneous transmission of classical and quantum information under channel uncertainty and jamming attacks [J].
Boche, Holger ;
Janssen, Gisbert ;
Saeedinaeeni, Sajad .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (02)