Global synchronization criteria with channel time-delay for chaotic time-delay system

被引:37
作者
Sun, JT [1 ]
机构
[1] Tongji Univ, Dept Appl Math, Shanghai 200092, Peoples R China
关键词
D O I
10.1016/j.chaos.2003.12.055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper studies the chaos synchronization of time-delay system using the unidirectional linear error feedback coupling with time-delay. Some generic conditions of chaos synchronization with time-delay in the transmission channel is established. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criteria under which the global chaos synchronization of the time-delay coupled systems is achieved. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:967 / 975
页数:9
相关论文
共 40 条
  • [1] On the synchronization of a class of electronic circuits that exhibit chaos
    Bai, EW
    Lonngren, KE
    Sprott, JC
    [J]. CHAOS SOLITONS & FRACTALS, 2002, 13 (07) : 1515 - 1521
  • [2] Antiphase synchronization of chaos by noncontinuous coupling: two impacting oscillators
    Blazejczyk-Okolewska, B
    Brindley, J
    Czolczynski, K
    Kapitaniak, T
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (10) : 1823 - 1826
  • [3] Boy S., 1994, Linear MatrixInequalities in System and Control Theory
  • [4] SYNCHRONIZING CHAOTIC CIRCUITS
    CARROLL, TL
    PECORA, LM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04): : 453 - 456
  • [5] Chen G., 1998, CHAOS ORDER METHODOL
  • [6] On time-delayed feedback control of chaotic systems
    Chen, GR
    Yu, XH
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06): : 767 - 772
  • [7] CORRON NJ, 2003, IEEE IMS WORKSH PHIL
  • [8] Absolute stability theory and master-slave synchronization
    Curran, PF
    Suykens, JAK
    Chua, LO
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12): : 2891 - 2896
  • [9] Synchronizing high dimensional chaotic systems via eigenvalue placement with application to cellular neural networks
    Grassi, G
    Mascolo, S
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (04): : 705 - 711
  • [10] Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal
    Grassi, G
    Mascolo, S
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10): : 1011 - 1014