Isogeometric analysis of Lagrangian hydrodynamics

被引:23
作者
Bazilevs, Y. [1 ]
Akkerman, I. [2 ]
Benson, D. J. [1 ]
Scovazzi, G. [3 ]
Shashkov, M. J. [4 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, San Diego, CA 92123 USA
[2] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
[3] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Lagrangian hydrodynamics; Shock physics; Isogeometric analysis; NURBS; Explicit time integration; Symmetry; Energy conservation; FINITE-ELEMENT FORMULATION; WIND TURBINE ROTORS; SHOCK HYDRODYNAMICS; ARTIFICIAL VISCOSITY; 3D SIMULATION; APPROXIMATION; CONTINUITY; GEOMETRY; ACCURATE; NURBS;
D O I
10.1016/j.jcp.2013.02.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Isogeometric analysis of Lagrangian shock hydrodynamics is proposed. The Euler equations of compressible hydrodynamics in the weak form are discretized using Non-Uniform Rational B-Splines (NURBS) in space. The discretization has all the advantages of a higher-order method, with the additional benefits of exact symmetry preservation and better per-degree-of-freedom accuracy. An explicit, second-order accurate time integration procedure, which conserves total energy, is developed and employed to advance the equations in time. The performance of the method is examined on a set of standard 2D and 3D benchmark examples, where good quality of the computational results is attained. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:224 / 243
页数:20
相关论文
共 52 条
[1]   The role of continuity in residual-based variational multiscale modeling of turbulence [J].
Akkerman, I. ;
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Hulshoff, S. .
COMPUTATIONAL MECHANICS, 2008, 41 (03) :371-378
[2]   Isogeometric analysis of free-surface flow [J].
Akkerman, I. ;
Bazilevs, Y. ;
Kees, C. E. ;
Farthing, M. W. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (11) :4137-4152
[3]   Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Reali, A. ;
Scovazzi, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :173-201
[4]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[5]   3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Akkerman, I. ;
Wright, S. ;
Takizawa, K. ;
Henicke, B. ;
Spielman, T. ;
Tezduyar, T. E. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) :207-235
[6]   3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Kiendl, J. ;
Wuechner, R. ;
Bletzinger, K. -U. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) :236-253
[7]   Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method [J].
Bazilevs, Y. ;
Akkerman, I. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (09) :3402-3414
[8]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[9]  
Belytschko T., 2014, Nonlinear Finite Elements for Continua and Structures, VSecond
[10]   A large deformation, rotation-free, isogeometric shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M-C ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (13-16) :1367-1378