Macroalgae Supercritical Water Gasification Combined with Nutrient Recycling for Microalgae Cultivation

被引:29
作者
Cherad, Ramzi [1 ]
Onwudili, J. A. [1 ]
Ekpo, U. [1 ,2 ]
Williams, P. T. [1 ]
Lea-Langton, A. R. [1 ]
Carmargo-Valero, M. [2 ]
Ross, A. B. [1 ]
机构
[1] Univ Leeds, Sch Proc Environm & Mat Engn, Energy Res Inst, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Civil Engn, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
seaweeds; macroalgae; hydrothermal gasification; algal bio-refinery; nutrient recycling; SYNTHETIC NATURAL-GAS; HYDROTHERMAL GASIFICATION; NANNOCHLOROPSIS SP; CATALYTIC GASIFICATION; HYDROGEN-PRODUCTION; REACTION-PRODUCTS; ALGAL BIOMASS; LIQUEFACTION; GLUCOSE; GROWTH;
D O I
10.1002/ep.11814
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The composition of syngas and process water from the supercritical water gasification of macroalgae has been investigated. The potential for using the process water as a source of nutrients for microalgae cultivation was assessed. Saccharina latissima, harvested across the four seasons was gasified in a batch reactor at 500 degrees C and 36 MPa to assess the influence of biochemical content and ash on syngas composition. In addition, summer harvests of four different macroalga were gasified with ruthenium catalyst (Ru/Al2O3). The molar yields of hydrogen and C-1-C-4 gases from S. latissima increased by 30% in the presence of Ru/Al2O3 with a maximum gasification efficiency of 92% compared with work without these catalysts. Following a series of dilutions, the process water from catalyzed gasification of S. latissima was used in cultivation trials of Chlorella vulgaris and compared to standard growth media. The results indicate the potential to recover process waters from gasification of macroalgae in nutrient management for microalgae. (c) 2013 American Institute of Chemical Engineers Environ Prog, 32: 902-909, 2013
引用
收藏
页码:902 / 909
页数:8
相关论文
共 43 条
[1]   Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion [J].
Adams, J. M. M. ;
Ross, A. B. ;
Anastasakis, K. ;
Hodgson, E. M. ;
Gallagher, J. A. ;
Jones, J. M. ;
Donnison, I. S. .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :226-234
[2]   Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters [J].
Bhatnagar, Ashish ;
Chinnasamy, Senthil ;
Singh, Manjinder ;
Das, K. C. .
APPLIED ENERGY, 2011, 88 (10) :3425-3431
[3]   Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process [J].
Biller, P. ;
Ross, A. B. ;
Skill, S. C. ;
Lea-Langton, A. ;
Balasundaram, B. ;
Hall, C. ;
Riley, R. ;
Llewellyn, C. A. .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2012, 1 (01) :70-76
[4]   Hydrothermal processing of algal biomass for the production of biofuels and chemicals [J].
Biller, Patrick ;
Ross, Andrew B. .
BIOFUELS-UK, 2012, 3 (05) :603-623
[5]   Hydrothermal Liquefaction and Gasification of Nannochloropsis sp. [J].
Brown, Tylisha M. ;
Duan, Peigao ;
Savage, Phillip E. .
ENERGY & FUELS, 2010, 24 (06) :3639-3646
[6]   Hydrogen production from glucose using Ru/Al2O3 catalyst in supercritical water [J].
Byrd, Adam J. ;
Pant, K. K. ;
Gupta, Ram B. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (11) :3574-3579
[7]   Catalytic and Non-catalytic Supercritical Water Gasification of Microalgae and Glycerol [J].
Chakinala, Anand G. ;
Brilman, Derk W. F. ;
van Swaaij, Wim P. M. ;
Kersten, Sascha R. A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (03) :1113-1122
[8]  
DECC, 2012, REN EN 2011 SPEC FEA, P49
[9]   Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts [J].
Duan, Peigao ;
Savage, Phillip E. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (01) :52-61
[10]   CHEMICAL-PROCESSING IN HIGH-PRESSURE AQUEOUS ENVIRONMENTS .2. DEVELOPMENT OF CATALYSTS FOR GASIFICATION [J].
ELLIOTT, DC ;
SEALOCK, LJ ;
BAKER, EG .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1993, 32 (08) :1542-1548