Advanced divertor configurations with large flux expansion

被引:23
作者
Soukhanovskii, V. A. [1 ]
Bell, R. E. [2 ]
Diallo, A. [2 ]
Gerhardt, S. [2 ]
Kaye, S. [2 ]
Kolemen, E. [2 ]
LeBlanc, B. P. [2 ]
McLean, A. [1 ]
Menard, J. E. [2 ]
Paul, S. F. [2 ]
Podesta, M. [2 ]
Raman, R. [4 ]
Ryutov, D. D. [1 ]
Scotti, F. [2 ]
Kaita, R. [2 ]
Maingi, R. [3 ]
Mueller, D. M. [2 ]
Roquemore, A. L. [2 ]
Reimerdes, H. [5 ]
Canal, G. P. [5 ]
Labit, B. [5 ]
Vijvers, W. [5 ]
Coda, S. [5 ]
Duval, B. P. [3 ]
Morgan, T. [6 ]
Zielinski, J. [6 ]
De Temmerman, G. [6 ]
Tal, B. [7 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN USA
[4] Univ Washington, Seattle, WA 98195 USA
[5] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1007 Lausanne, Switzerland
[6] EURATOM, FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands
[7] WIGNER Res Ctr Phys, Budapest, Hungary
关键词
PLASMA; GEOMETRY;
D O I
10.1016/j.jnucmat.2013.01.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as reappearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3-7 MW/m(2) to 0.5-1 MW/m(2) was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L-H power threshold, enhanced stability of the peeling-ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (x2-3) Type I ELM frequency and slightly increased (20-30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX and TCV experiments are providing support for the snowflake divertor as a viable solution for the outstanding tokamak plasma-material interface issues. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:S96 / S101
页数:6
相关论文
共 40 条
[1]  
[Anonymous], 1999, NUCL FUSION, V39, P2391, DOI DOI 10.1088/0029-5515/39/12/304
[2]  
Calabro G., 2011, PROCEEDINGS OF THE 3
[3]   A fusion development facility on the critical path to fusion energy [J].
Chan, V. S. ;
Stambaugh, R. D. ;
Garofalo, A. M. ;
Canik, J. ;
Kinsey, J. E. ;
Park, J. M. ;
Peng, M. Y. K. ;
Petrie, T. W. ;
Porkolab, M. ;
Prater, R. ;
Sawan, M. ;
Smith, J. P. ;
Snyder, P. B. ;
Stangeby, P. C. ;
Wong, C. P. C. .
NUCLEAR FUSION, 2011, 51 (08)
[4]   Progress and scientific results in the TCV tokamak [J].
Coda, S. .
NUCLEAR FUSION, 2011, 51 (09)
[5]  
Eich T., 2012, THIS CONFERENCE
[6]   Integration of a radiative divertor for heat load control into JET high triangularity ELMy H-mode plasmas [J].
Giroud, C. ;
Maddison, G. ;
McCormick, K. ;
Beurskens, M. N. A. ;
Brezinsek, S. ;
Devaux, S. ;
Eich, T. ;
Frassinetti, L. ;
Fundamenski, W. ;
Groth, M. ;
Huber, A. ;
Jachmich, S. ;
Jarvinen, A. ;
Kallenbach, A. ;
Krieger, K. ;
Moulton, D. ;
Saarelma, S. ;
Thomsen, H. ;
Wiesen, S. ;
Alonso, A. ;
Alper, B. ;
Arnoux, G. ;
Belo, P. ;
Boboc, A. ;
Brett, A. ;
Brix, M. ;
Coffey, I. ;
de la Luna, E. ;
Dodt, D. ;
De Vries, P. ;
Felton, R. ;
Giovanozzi, E. ;
Harling, J. ;
Harting, D. ;
Hawkes, N. ;
Hobirk, J. ;
Jenkins, I. ;
Joffrin, E. ;
Kempenaars, M. ;
Lehnen, M. ;
Loarer, T. ;
Lomas, P. ;
Mailloux, J. ;
McDonald, D. ;
Meigs, A. ;
Morgan, P. ;
Nunes, I. ;
van Thun, C. Perez ;
Riccardo, V. ;
Rimini, F. .
NUCLEAR FUSION, 2012, 52 (06)
[7]   Dependence of divertor heat flux widths on heating power, flux expansion, and plasma current in the NSTX [J].
Gray, T. K. ;
Maingi, R. ;
Soukhanovskii, V. A. ;
Surany, J. E. ;
Ahn, J-W ;
McLean, A. G. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S360-S364
[8]   MAST upgrade closed pumped divertor design and analysis [J].
Katramados, I. ;
Fishpool, G. ;
Fursdon, M. ;
Whitfield, G. ;
Thompson, V. ;
Meyer, H. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) :1595-1598
[9]  
Labit B., 2011, PROCEEDINGS OF THE 3
[10]   Plasma-surface interaction, scrape-off layer and divertor physics: implications for ITER [J].
Lipschultz, B. ;
Bonnin, X. ;
Counsell, G. ;
Kallenbach, A. ;
Kukushkin, A. ;
Krieger, K. ;
Leonard, A. ;
Loarte, A. ;
Neu, R. ;
Pitts, R. A. ;
Rognlien, T. ;
Roth, J. ;
Skinner, C. ;
Terry, J. L. ;
Tsitrone, E. ;
Whyte, D. ;
Zweben, S. ;
Asakura, N. ;
Coster, D. ;
Doerner, R. ;
Dux, R. ;
Federici, G. ;
Fenstermacher, M. ;
Fundamenski, W. ;
Ghendrih, P. ;
Herrmann, A. ;
Hu, J. ;
Krasheninnikov, S. ;
Kirnev, G. ;
Kreter, A. ;
Kurnaev, V. ;
LaBombard, B. ;
Lisgo, S. ;
Nakano, T. ;
Ohno, N. ;
Pacher, H. D. ;
Paley, J. ;
Pan, Y. ;
Pautasso, G. ;
Philipps, V. ;
Rohde, V. ;
Rudakov, D. ;
Stangeby, P. ;
Takamura, S. ;
Tanabe, T. ;
Yang, Y. ;
Zhu, S. .
NUCLEAR FUSION, 2007, 47 (09) :1189-1205