Maximum Inequalities and their Applications to Hadamard Matrices

被引:0
作者
Giorgobiani, George [1 ]
Kvaratskhelia, Vakhtang [1 ]
Menteshashvili, Marine [1 ]
机构
[1] Georgian Tech Univ, Muskhelishvili Inst Computat Math, Tbilisi, Georgia
来源
2017 ELEVENTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES (CSIT) | 2017年
关键词
maximal inequalities; Hadamard matrices; Chernoff bound;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new numerical characterization for Hadamard matrices is introduced. Its estimations for different norms are established by use of appropriate maximal inequalities for the signed vector summands.
引用
收藏
页码:110 / 112
页数:3
相关论文
共 9 条
  • [1] Alon N., 1992, The probabilistic method
  • [2] CHOBANYAN SA, 1989, LECT NOTES MATH, V1391, P33
  • [3] Some numerical characteristics of Sylvester and Hadamard matrices
    Figula, Agota
    Kvaratskhelia, Vakhtang
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (1-2): : 149 - 168
  • [4] Giorgobiani G., 2016, S CAUC GRID CLOUD CO
  • [5] Giorgobiani G, 2015, TENTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES REVISED SELECTED PAPERS CSIT-2015, P64, DOI 10.1109/CSITechnol.2015.7358251
  • [7] Kvaratskhelia V., 2002, FUNCTIONAL ANAL ITS, V36, P81
  • [8] BALANCING VECTORS IN THE MAX NORM
    SPENCER, J
    [J]. COMBINATORICA, 1986, 6 (01) : 55 - 65
  • [9] Vakhania N. N., 1987, Probability Distributions on Banach Spaces