On Uniqueness of p-adic Period Morphisms

被引:0
|
作者
Niziol, Wieslawa [1 ]
机构
[1] Univ Utah, Coll Sci, Dept Math, Salt Lake City, UT 84112 USA
关键词
p-adic Hodge theory; comparison morphisms; motivic cohomology; CRYSTALLINE COHOMOLOGY; K-THEORY; ETALE; REPRESENTATIONS; CONJECTURE; CYCLES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present uniqueness criteria for p-adic period morphisms for proper varieties and show that the imply equality of the p-adic period morphisms defined using the syntomic, almost etale and motivic constructions.
引用
收藏
页码:163 / 212
页数:50
相关论文
共 50 条
  • [31] The universal p-adic Gross-Zagier formula
    Disegni, Daniel
    INVENTIONES MATHEMATICAE, 2022, 230 (02) : 509 - 649
  • [32] Periodic cyclic homology of reductive p-adic groups
    Solleveld, Maarten
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2009, 3 (04) : 501 - 558
  • [33] Curves and vector bundles in p-adic Hodge theory
    Fargues, Laurent
    Fontaine, Jean-Marc
    Colmez, Pierre
    ASTERISQUE, 2018, (406) : 51 - +
  • [34] Cohomology of p-adic analytic curves
    Colmez, Pierre
    Dospinescu, Gabriel
    Niziol, Wieslawa
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (03) : 511 - 655
  • [35] ON THE p-ADIC COHOMOLOGY OF SOME p-ADICALLY UNIFORMIZED VARIETIES
    Grosse-Kloenne, Elmar
    JOURNAL OF ALGEBRAIC GEOMETRY, 2011, 20 (01) : 151 - 198
  • [36] A p-ADIC FAMILY OF DIHEDRAL (φ, Γ)-MODULES
    Berger, Laurent
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (07) : 1825 - 1834
  • [37] Integral p-adic Hodge theory
    Bhatt, Bhargav
    Morrow, Matthew
    Scholze, Peter
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2018, 128 (01): : 219 - 397
  • [38] Coleman maps and the p-adic regulator
    Lei, Antonio
    Loeffler, David
    Zerbes, Sarah Livia
    ALGEBRA & NUMBER THEORY, 2011, 5 (08) : 1095 - 1131
  • [39] p-adic cocycles and their regulator maps
    Choo, Zacky
    Snaith, Victor
    JOURNAL OF K-THEORY, 2011, 8 (02) : 241 - 249
  • [40] Distinction for Unipotent p-Adic Groups
    Matringe, Nadir
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (06) : 1571 - 1582