On Uniqueness of p-adic Period Morphisms

被引:0
|
作者
Niziol, Wieslawa [1 ]
机构
[1] Univ Utah, Coll Sci, Dept Math, Salt Lake City, UT 84112 USA
关键词
p-adic Hodge theory; comparison morphisms; motivic cohomology; CRYSTALLINE COHOMOLOGY; K-THEORY; ETALE; REPRESENTATIONS; CONJECTURE; CYCLES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present uniqueness criteria for p-adic period morphisms for proper varieties and show that the imply equality of the p-adic period morphisms defined using the syntomic, almost etale and motivic constructions.
引用
收藏
页码:163 / 212
页数:50
相关论文
共 50 条
  • [1] On uniqueness of p-adic period morphisms, II
    Niziol, Wieslawa
    COMPOSITIO MATHEMATICA, 2020, 156 (09) : 1915 - 1964
  • [2] Coverings of p-adic period domains
    Faltings, Gerd
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 643 : 111 - 139
  • [3] Syntomic cohomology and p-adic motivic cohomology
    Ertl, Veronika
    Niziol, Wieslawa
    ALGEBRAIC GEOMETRY, 2019, 6 (01): : 100 - 131
  • [4] Galois sections and p-adic period mappings
    Betts, L. alexander
    Stix, Jakob
    ANNALS OF MATHEMATICS, 2025, 201 (01) : 79 - 166
  • [5] Uniqueness of the Ginzburg-Rallis model: the p-adic case
    Jiang, Dihua
    Li, Zhaolin
    Xi, Guodong
    RESEARCH IN NUMBER THEORY, 2025, 11 (01)
  • [6] Syntomic cohomology and p-adic regulators for varieties over p-adic fields
    Nekovar, Jan
    Niziol, Wieslawa
    Berger, Laurent
    Deglise, Frederic
    ALGEBRA & NUMBER THEORY, 2016, 10 (08) : 1695 - 1790
  • [7] Cycle Classes for p-Adic Etale Tate twists and The Image of p-Adic Regulators
    Sato, Kanetomo
    DOCUMENTA MATHEMATICA, 2013, 18 : 177 - 247
  • [8] Syntomic complexes and p-adic nearby cycles
    Colmez, Pierre
    Niziol, Wieslawa
    INVENTIONES MATHEMATICAE, 2017, 208 (01) : 1 - 108
  • [9] THE CRYSTALLINE PERIOD OF A HEIGHT ONE p-ADIC DYNAMICAL SYSTEM
    Specter, Joel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (05) : 3591 - 3608
  • [10] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)