Acid-Disintegratable Polymersomes of pH-Responsive Amphiphilic Diblock Copolymers for Intracellular Drug Delivery

被引:102
|
作者
Wang, Lei [1 ]
Liu, Guhuan [1 ]
Wang, Xiaorui [1 ]
Hu, Jinming [1 ]
Zhang, Guoying [1 ]
Liu, Shiyong [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, iChem Collaborat Innovat Ctr Chem Energy Mat, CAS Key Lab Soft Matter Chem,Dept Polymer Sci & E, Hefei 230026, Anhui, Peoples R China
关键词
DEGRADABLE CHIMERIC POLYMERSOMES; TRIGGERED RELEASE; BLOCK-COPOLYMERS; BREAST-CANCER; EXPANSILE NANOPARTICLES; GRAFT COPOLYMER; STAR POLYMERS; GENE DELIVERY; IN-VITRO; VESICLES;
D O I
10.1021/acs.macromol.5b01709
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Supramolecular vesicles, also referred to as polymersomes, self-assembled from amphiphilic polymers capable of synchronically loading with both hydrophilic and hydrophobic payloads have shown promising potential in drug delivery application. Herein, we report the fabrication of pH-responsive polymersomes via supramolecular self-assembly of amphiphilic diblock copolymers, poly(ethylene oxide)-b-poly(2-((((5-methyl-2-(2,4,6-trimethoxyphenyl)-1,3-dioxan-5-yl)methoxy)carbonyl)amino)ethylmethacrylate) (PEO-b-PTTAMA), which were synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization of a pH-responsive monomer (i.e., TTAMA) using a PEO-based macroRAFT agent. The resultant amphiphilic diblock copolymer then self-assembled into vesicles consisting of hydrophilic PEO coronas and pH-responsive hydrophobic bilayers, as confirmed by TEM and DLS measurements. The polymersomes containing cyclic benzylidene acetals in the hydrophobic bilayers were relatively stable under neutral pH, whereas they underwent hydrolysis with the liberation of hydrophobic 2,4,6-trimethoxybenzaldehyde and the simultaneous generation of hydrophilic diol moieties upon exposure to acidic pH milieu, which could be monitored by UV/vis spectroscopy, SEM, and TEM observations. By loading hydrophobic model drug (Nile red) as well as hydrophilic chemotherapeutic drug (doxorubicin hydrochloride, DOX center dot HCl) into the bilayer and aqueous interior of the polymersomes, the subsequent release of Nile red and DOX center dot HCl payloads was remarkably regulated by the solution pH values, and a lower pH value led to a faster drug release profile. In vitro experiment, observed by a confocal laser scanning microscope (CLSM), revealed that the pH-responsive polymersomes were easily taken up by HeLa cells and were primarily located in the acidic organelles after internalization, where the pH-responsive cyclic acetal moieties were hydrolyzed and the embedded payloads were therefore released, allowing for on-demand release of the encapsulants mediated by intracellular pH. In addition to small molecule chemotherapeutic drugs, biomacromolecules (alkaline phosphatase, ALP) can also be encapsulated into the aqueous lumen of the polymersomes. Significantly, the pH-triggered degradation of polymersomes could also regulate the release of encapsulated ALP, as confirmed by ALP-activated fluorogenic reaction.
引用
收藏
页码:7262 / 7272
页数:11
相关论文
共 50 条
  • [31] pH-Responsive Nanometric Polydiacetylenic Micelles Allow for Efficient Intracellular siRNA Delivery
    Ripoll, Manon
    Neuberg, Patrick.
    Kichler, Antoine
    Tounsi, Nassera
    Wagner, Alain
    Remy, Jean-Serge
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 30665 - 30670
  • [32] pH-Responsive Dynaplexes as Potent Apoptosis Inductors by Intracellular Delivery of Survivin siRNA
    Liu, Yun
    Ashmawy, Salma
    Latta, Lorenz
    Weiss, Agnes-Valencia
    Kiefer, Alexander F.
    Nasr, Sarah
    Loretz, Brigitta
    Hirsch, Anna K. H.
    Lee, Sangeun
    Lehr, Claus-Michael
    BIOMACROMOLECULES, 2023, 24 (08) : 3742 - 3754
  • [33] pH-Responsive Non-Ionic Diblock Copolymers: Ionization of Carboxylic Acid End-Groups Induces an Order-Order Morphological Transition
    Lovett, Joseph R.
    Warren, Nicholas J.
    Ratcliffe, Liam P. D.
    Kocik, Marzena K.
    Armes, Steven P.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (04) : 1279 - 1283
  • [34] Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles
    Kuperkar, Ketan
    Patel, Dhruvi
    Atanase, Leonard Ionut
    Bahadur, Pratap
    POLYMERS, 2022, 14 (21)
  • [35] Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery
    Yuan, Xiaozhe
    Peng, Shiyuan
    Lin, Wenjing
    Wang, Jufang
    Zhang, Lijuan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 555 : 82 - 93
  • [36] Amphiphilic sugar poly(orthoesters) as pH-responsive nanoscopic assemblies for acidity-enhanced drug delivery and cell killing
    Li, Lingyao
    Knickelbein, Kyle
    Zhang, Lin
    Wang, Jun
    Obrinske, Melissa
    Ma, Gene Zhengxin
    Zhang, Li-Ming
    Bitterman, Lindsay
    Du, Wenjun
    CHEMICAL COMMUNICATIONS, 2015, 51 (66) : 13078 - 13081
  • [37] pH-Responsive Polymer Core-Shell Nanospheres for Drug Delivery
    Wang, Hui
    Rempel, Garry L.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2013, 51 (20) : 4440 - 4450
  • [38] pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery
    Sun, Henglai
    Li, Xinyu
    Liu, Qian
    Sheng, Huagang
    Zhu, Liqiao
    JOURNAL OF DRUG TARGETING, 2024, 32 (06) : 672 - 706
  • [39] Biodegradable Thermo- and pH-Responsive Hydrogels for Oral Drug Delivery
    Zhang, Zhe
    Chen, Li
    Deng, Mingxiao
    Bai, Yunyan
    Chen, Xuesi
    Jing, Xiabin
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2011, 49 (13) : 2941 - 2951
  • [40] pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery
    Cheng, Lianghao
    Deng, Bin
    Luo, Weihua
    Nie, Shaofei
    Liu, Xinyi
    Yin, Yanan
    Liu, Shibo
    Wu, Zhiping
    Zhan, Peng
    Zhang, Lin
    Chen, Jienan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (18) : 5249 - 5258