On p-Values and Bayes Factors

被引:166
作者
Held, Leonhard [1 ]
Ott, Manuela [1 ]
机构
[1] Univ Zurich, Epidemiol Biostat & Prevent Inst, CH-8001 Zurich, Switzerland
来源
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5 | 2018年 / 5卷
关键词
Bayes factor; evidence; minimum Bayes factor; objective Bayes; p-value; sample size; MODEL SELECTION; HYPOTHESIS; CRITERIA;
D O I
10.1146/annurev-statistics-031017-100307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The p-value quantifies the discrepancy between the data and a null hypothesis of interest, usually the assumption of no difference or no effect. A Bayesian approach allows the calibration of p-values by transforming them to direct measures of the evidence against the null hypothesis, so-called Bayes factors. We review the available literature in this area and consider two-sided significance tests for a point null hypothesis in more detail. We distinguish simple from local alternative hypotheses and contrast traditional Bayes factors based on the data with Bayes factors based on p-values or test statistics. A well-known finding is that the minimum Bayes factor, the smallest possible Bayes factor within a certain class of alternative hypotheses, provides less evidence against the null hypothesis than the corresponding p-value might suggest. It is less known that the relationship between p-values and minimum Bayes factors also depends on the sample size and on the dimension of the parameter of interest. We illustrate the transformation of p-values to minimum Bayes factors with two examples from clinical research.
引用
收藏
页码:393 / 419
页数:27
相关论文
共 54 条
[1]   Rejection odds and rejection ratios: A proposal for statistical practice in testing hypotheses [J].
Bayarri, M. J. ;
Benjamin, Daniel J. ;
Berger, James O. ;
Sellke, Thomas M. .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2016, 72 :90-103
[2]   CRITERIA FOR BAYESIAN MODEL CHOICE WITH APPLICATION TO VARIABLE SELECTION [J].
Bayarri, M. J. ;
Berger, J. O. ;
Forte, A. ;
Garcia-Donato, G. .
ANNALS OF STATISTICS, 2012, 40 (03) :1550-1577
[3]   Redefine statistical significance [J].
Benjamin, Daniel J. ;
Berger, James O. ;
Johannesson, Magnus ;
Nosek, Brian A. ;
Wagenmakers, E. -J. ;
Berk, Richard ;
Bollen, Kenneth A. ;
Brembs, Bjoern ;
Brown, Lawrence ;
Camerer, Colin ;
Cesarini, David ;
Chambers, Christopher D. ;
Clyde, Merlise ;
Cook, Thomas D. ;
De Boeck, Paul ;
Dienes, Zoltan ;
Dreber, Anna ;
Easwaran, Kenny ;
Efferson, Charles ;
Fehr, Ernst ;
Fidler, Fiona ;
Field, Andy P. ;
Forster, Malcolm ;
George, Edward I. ;
Gonzalez, Richard ;
Goodman, Steven ;
Green, Edwin ;
Green, Donald P. ;
Greenwald, Anthony ;
Hadfield, Jarrod D. ;
Hedges, Larry V. ;
Held, Leonhard ;
Ho, Teck Hua ;
Hoijtink, Herbert ;
Hruschka, Daniel J. ;
Imai, Kosuke ;
Imbens, Guido ;
Ioannidis, John P. A. ;
Jeon, Minjeong ;
Jones, James Holland ;
Kirchler, Michael ;
Laibson, David ;
List, John ;
Little, Roderick ;
Lupia, Arthur ;
Machery, Edouard ;
Maxwell, Scott E. ;
McCarthy, Michael ;
Moore, Don ;
Morgan, Stephen L. .
NATURE HUMAN BEHAVIOUR, 2018, 2 (01) :6-10
[4]   The Case for Objective Bayesian Analysis [J].
Berger, James .
BAYESIAN ANALYSIS, 2006, 1 (03) :385-402
[5]  
BERGER JO, 1987, J AM STAT ASSOC, V82, P112, DOI 10.2307/2289131
[6]  
Bernardo J. M., 2000, BAYESIAN THEORY
[7]  
Berry DA, 2016, AM STAT, V70
[8]  
Bland M., 2015, An introduction to medical statistics
[9]   RECONCILING BAYESIAN AND FREQUENTIST EVIDENCE IN THE ONE-SIDED TESTING PROBLEM [J].
CASELLA, G ;
BERGER, RL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (397) :106-111
[10]  
Cox D.R., 2011, Principles of Applied Statistics