Building siamese attention-augmented recurrent convolutional neural networks for document similarity scoring

被引:9
|
作者
Han, Sifei [1 ]
Shi, Lingyun [1 ]
Richie, Russell [1 ]
Tsui, Fuchiang R. Rich [1 ,2 ]
机构
[1] Childrens Hosp Philadelphia, Dept Biomed & Hlth Informat, Tsui Lab, 2716 South St, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, 3400 Spruce St,Suite 680 Dulles, Philadelphia, PA USA
基金
美国国家科学基金会;
关键词
Attention neural network; Deep learning; Machine learning; Natural language processing; Information retrieval; Text similarity;
D O I
10.1016/j.ins.2022.10.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatically measuring document similarity is imperative in natural language process-ing, with applications ranging from recommendation to duplicate document detection. State-of-the-art approach in document similarity commonly involves deep neural net-works, yet there is little study on how different architectures may be combined. Thus, we introduce the Siamese Attention-augmented Recurrent Convolutional Neural Network (S-ARCNN) that combines multiple neural network architectures. In each subnet-work of S-ARCNN, a document passes through a bidirectional Long Short-Term Memory (bi-LSTM) layer, which sends representations to local and global document modules. A local document module uses convolution, pooling, and attention layers, whereas a global document module uses last states of the bi-LSTM. Both local and global features are con-catenated to form a single document representation. Using the Quora Question Pairs data -set, we evaluated S-ARCNN, Siamese convolutional neural networks (S-CNNs), Siamese LSTM, and two BERT models. While S-CNNs (82.02% F1) outperformed S-ARCNN (79.83% F1) overall, S-ARCNN slightly outperformed S-CNN on duplicate question pairs with more than 50 words (39.96% vs. 39.42% accuracy). With the potential advantage of S-ARCNN for processing longer documents, S-ARCNN may help researchers identify collaborators with similar research interests, help editors find potential reviewers, or match resumes with job descriptions.(c) 2022 Published by Elsevier Inc.
引用
收藏
页码:90 / 102
页数:13
相关论文
共 50 条
  • [21] Review Helpfulness Prediction Using Convolutional Neural Networks and Gated Recurrent Units
    Basiri, Mohammad Ehsan
    Habibi, Shirin
    2020 6TH INTERNATIONAL CONFERENCE ON WEB RESEARCH (ICWR), 2020, : 191 - 196
  • [22] Recurrent networks with attention and convolutional networks for sentence representation and classification
    Liu, Tengfei
    Yu, Shuangyuan
    Xu, Baomin
    Yin, Hongfeng
    APPLIED INTELLIGENCE, 2018, 48 (10) : 3797 - 3806
  • [23] Attention Visualization of Gated Convolutional Neural Networks with Self Attention in Sentiment Analysis
    Yanagimto, Hidekazu
    Hashimoto, Kiyota
    Okada, Makoto
    2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA ENGINEERING (ICMLDE 2018), 2018, : 77 - 82
  • [24] Application of Convolutional Neural Networks and Recurrent Neural Networks in Food Safety
    Ding, Haohan
    Hou, Haoke
    Wang, Long
    Cui, Xiaohui
    Yu, Wei
    Wilson, David I.
    FOODS, 2025, 14 (02)
  • [25] Siamese Style Convolutional Neural Networks for Sound Search by Vocal Imitation
    Zhang, Yichi
    Pardo, Bryan
    Duan, Zhiyao
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2019, 27 (02) : 429 - 441
  • [26] BUILDING CHANGE DETECTION USING MODIFIED SIAMESE NEURAL NETWORKS
    Cummings, Sol
    Nakamura, Sho
    Shimazaki, Yasunobu
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 672 - 675
  • [27] Analysis of Convolutional Neural Networks for Document Image Classification
    Tensmeyer, Chris
    Martinez, Tony
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 388 - 393
  • [28] Convolutional Recurrent Neural Networks for Glucose Prediction
    Li, Kezhi
    Daniels, John
    Liu, Chengyuan
    Herrero, Pau
    Georgiou, Pantelis
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (02) : 603 - 613
  • [29] FAST GRAPH CONVOLUTIONAL RECURRENT NEURAL NETWORKS
    Kadambari, Sai Kiran
    Chepuri, Sundeep Prabhakar
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 467 - 471
  • [30] Document Image Binarization with Fully Convolutional Neural Networks
    Tensmeyer, Chris
    Martinez, Tony
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 99 - 104