Device-scale computational fluid dynamics modeling of carbon dioxide absorption using encapsulated sorbents

被引:10
作者
Wang, Chao [1 ]
Singh, Rajesh Kumar [1 ]
Xu, Zhijie [1 ]
机构
[1] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA
关键词
MECS; Computational fluid dynamics; Carbon capture; MFIX; Device-scale simulation; Multi-phase flow; CO2; CAPTURE; HIERARCHICAL CALIBRATION; SOLID SORBENTS; MASS-TRANSFER; SIMULATIONS; VALIDATION; CORROSION; SOLVENTS;
D O I
10.1016/j.powtec.2018.12.038
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Micro-encapsulated carbon dioxide sorbent (MECS) is considered as a promising material for carbon capture system because of high capture rate, low fabrication cost, and efficient energy consumption. To accelerate the development of MECS technology for industrial deployment, device-scale computational fluid dynamics (CFD) simulations are performed to study hydrodynamics and CO2 absorption behavior in a conceptual fluidized bed reactor. The two-fluid model solver, built in the Multiphase Flow with Interphase eXchanges (MFIX), is adopted to solve the multiphase flow hydrodynamics by representing both fluid and solids as continuous phases. Filtered models are implemented to capture the sub-grid effects that normally cannot be directly considered because MECS particles are too small to be explicitly resolved at such a large scale. Using established CFD tools, this study aims to characterize MECS behavior and predict its carbon capture performance in a conceptual device-scale absorber. The MECS particle size and gas flow rate have significant impact on CO2 capture efficiency. The CO2 capture efficiency decreases with increasing gas flow rate. Smaller MECS particles lead to better CO2 absorption and gas-solid homogeneity. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:590 / 597
页数:8
相关论文
共 30 条
[1]   Simulation of CO2 capture using MEA scrubbing:: a flowsheet decomposition method [J].
Alie, C ;
Backham, L ;
Croiset, E ;
Douglas, PL .
ENERGY CONVERSION AND MANAGEMENT, 2005, 46 (03) :475-487
[2]   A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption [J].
Cousins, A. ;
Wardhaugh, L. T. ;
Feron, P. H. M. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (04) :605-619
[3]  
Finn Justin, 2017, DISCRETE PARTICLE MO
[4]   Modeling and simulation of CO2 capture using semipermeable elastic microcapsules [J].
Finn, Justin R. ;
Galvin, Janine E. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2018, 74 :191-205
[5]   A low energy aqueous ammonia CO2 capture process [J].
Gaspar, Jozsef ;
Arshad, Muhammad Waseem ;
Blaker, Eirik Ask ;
Langseth, Birger ;
Hansen, Tord ;
Thomsen, Kaj ;
von Solms, Nicolas ;
Fosbol, Philip Loldrup .
12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 :614-623
[6]   Organic liquid CO2 capture agents with high gravimetric CO2 capacity [J].
Heldebrant, David J. ;
Yonker, Clement R. ;
Jessop, Philip G. ;
Phan, Lam .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (04) :487-493
[7]   Carbon dioxide capture and storage [J].
Benson, Sally M. ;
Orr, Franklin M., Jr. .
MRS BULLETIN, 2008, 33 (04) :303-305
[8]   Corrosion in MEA units for CO2 capture: pilot plant studies [J].
Kittel, J. ;
Idem, R. ;
Gelowitz, D. ;
Tontiwachwuthikul, P. ;
Parrain, G. ;
Bonneau, A. .
GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01) :791-797
[9]   CO2 capture from coal-fired power plants based on sodium carbonate slurry; a systems feasibility and sensitivity study [J].
Knuutila, Hanna ;
Svendsen, Hallvard F. ;
Anttila, Mikko .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2009, 3 (02) :143-151
[10]   Measuring the Absorption Rate of CO2 in Nonaqueous CO2-Binding Organic Liquid Solvents with a Wetted-Wall Apparatus [J].
Mathias, Paul M. ;
Zheng, Feng ;
Heldebrant, David J. ;
Zwoster, Andy ;
Whyatt, Greg ;
Freeman, Charles M. ;
Bearden, Mark D. ;
Koech, Phillip .
CHEMSUSCHEM, 2015, 8 (21) :3617-3625