A simple and fast algorithm for K-medoids clustering

被引:1415
作者
Park, Hae-Sang [1 ]
Jun, Chi-Hyuck [1 ]
机构
[1] POSTECH, Dept Ind & Management Engn, Pohang 790784, South Korea
关键词
Clustering; K-means; K-medoids; Rand index; INITIALIZATION; AID;
D O I
10.1016/j.eswa.2008.01.039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new algorithm for K-medoids clustering which runs like the K-means algorithm and tests several methods for selecting initial medoids. The proposed algorithm calculates the distance matrix once and uses it for finding new medoids at every iterative step. To evaluate the proposed algorithm, we use some real and artificial data sets and compare with the results of other algorithms in terms of the adjusted Rand index. Experimental results show that the proposed algorithm takes a significantly reduced time ill computation with comparable performance against the partitioning around medoids. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3336 / 3341
页数:6
相关论文
共 12 条
[1]   New methods for the initialisation of clusters [J].
AlDaoud, MB ;
Roberts, SA .
PATTERN RECOGNITION LETTERS, 1996, 17 (05) :451-455
[2]  
Han J., 2001, GEOGRAPHIC DATA MINI
[3]   COMPARING PARTITIONS [J].
HUBERT, L ;
ARABIE, P .
JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) :193-218
[4]  
Kaufman L., 1990, Finding Groups in Data, V447, P467, DOI DOI 10.1002/9780470316801
[5]   Cluster center initialization algorithm for K-means clustering [J].
Khan, SS ;
Ahmad, A .
PATTERN RECOGNITION LETTERS, 2004, 25 (11) :1293-1302
[6]   ON K-MEDOID CLUSTERING OF LARGE DATA SETS WITH THE AID OF A GENETIC ALGORITHM - BACKGROUND, FEASIBILITY AND COMPARISON [J].
LUCASIUS, CB ;
DANE, AD ;
KATEMAN, G .
ANALYTICA CHIMICA ACTA, 1993, 282 (03) :647-669
[7]  
MacQueen J., 1967, 5 BERK S MATH STAT P, P281, DOI DOI 10.1007/S11665-016-2173-6
[8]  
Ng R.T., 1994, P 20 INT C VERY LARG, P144
[9]   SILHOUETTES - A GRAPHICAL AID TO THE INTERPRETATION AND VALIDATION OF CLUSTER-ANALYSIS [J].
ROUSSEEUW, PJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 20 :53-65
[10]   A new partitioning around medoids algorithm [J].
Van der Laan, MJ ;
Pollard, KS ;
Bryan, J .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (08) :575-584