Quantitative prediction of grain boundary thermal conductivities from local atomic environments

被引:51
作者
Fujii, Susumu [1 ,2 ,3 ]
Yokoi, Tatsuya [3 ,4 ]
Fisher, Craig A. J. [1 ]
Moriwake, Hiroki [1 ,2 ]
Yoshiya, Masato [1 ,3 ,5 ]
机构
[1] Japan Fine Ceram Ctr, Nanostruct Res Lab, Atsuta Ku, 2-4-1 Mutsuno, Nagoya, Aichi 4568587, Japan
[2] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[3] Osaka Univ, Dept Adapt Machine Syst, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[4] Nagoya Univ, Dept Mat Phys, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[5] Osaka Univ, Div Mat & Mfg Sci, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
STRUCTURE-ENERGY CORRELATION; MOLECULAR-DYNAMICS; FCC METALS; PERFORMANCE; RESISTANCE; TRANSPORT; TRANSFORMATION;
D O I
10.1038/s41467-020-15619-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantifying the dependence of thermal conductivity on grain boundary (GB) structure is critical for controlling nanoscale thermal transport in many technologically important materials. A major obstacle to determining such a relationship is the lack of a robust and physically intuitive structure descriptor capable of distinguishing between disparate GB structures. We demonstrate that a microscopic structure metric, the local distortion factor, correlates well with atomically decomposed thermal conductivities obtained from perturbed molecular dynamics for a wide variety of MgO GBs. Based on this correlation, a model for accurately predicting thermal conductivity of GBs is constructed using machine learning techniques. The model reveals that small distortions to local atomic environments are sufficient to reduce overall thermal conductivity dramatically. The method developed should enable more precise design of next-generation thermal materials as it allows GB structures exhibiting the desired thermal transport behaviour to be identified with small computational overhead.
引用
收藏
页数:10
相关论文
共 66 条
  • [1] Scaling laws of cumulative thermal conductivity for short and long phonon mean free paths
    Aketo, Daisuke
    Shiga, Takuma
    Shiomi, Junichiro
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (13)
  • [2] [Anonymous], 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  • [3] Thermal transport across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations
    Bagri, Akbar
    Kim, Sang-Pil
    Ruoff, Rodney S.
    Shenoy, Vivek B.
    [J]. NANO LETTERS, 2011, 11 (09) : 3917 - 3921
  • [4] Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water
    Bartok, Albert P.
    Gillan, Michael J.
    Manby, Frederick R.
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 88 (05)
  • [5] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [6] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [7] High-performance bulk thermoelectrics with all-scale hierarchical architectures
    Biswas, Kanishka
    He, Jiaqing
    Blum, Ivan D.
    Wu, Chun-I
    Hogan, Timothy P.
    Seidman, David N.
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    [J]. NATURE, 2012, 489 (7416) : 414 - 418
  • [8] Nanoscale thermal transport. II. 2003-2012
    Cahill, David G.
    Braun, Paul V.
    Chen, Gang
    Clarke, David R.
    Fan, Shanhui
    Goodson, Kenneth E.
    Keblinski, Pawel
    King, William P.
    Mahan, Gerald D.
    Majumdar, Arun
    Maris, Humphrey J.
    Phillpot, Simon R.
    Pop, Eric
    Shi, Li
    [J]. APPLIED PHYSICS REVIEWS, 2014, 1 (01):
  • [9] Nanoscale thermal transport
    Cahill, DG
    Ford, WK
    Goodson, KE
    Mahan, GD
    Majumdar, A
    Maris, HJ
    Merlin, R
    Phillpot, SR
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 793 - 818
  • [10] Grain boundary complexions
    Cantwell, Patrick R.
    Tang, Ming
    Dillon, Shen J.
    Luo, Jian
    Rohrer, Gregory S.
    Harmer, Martin P.
    [J]. ACTA MATERIALIA, 2014, 62 : 1 - 48