Li2O2 oxidation: the charging reaction in the aprotic Li-O2 batteries

被引:18
作者
Cui, Qinghua [1 ,2 ]
Zhang, Yelong [1 ,2 ]
Ma, Shunchao [1 ,2 ]
Peng, Zhangquan [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Elect Chem, Changchun 130022, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Aprotic Li-O-2 battery; Li2O2; oxidation; Morphology; Kinetics; Initial location upon oxidation; Charge transport; KINETIC OVERPOTENTIALS; OXYGEN REDUCTION; TRANSPORT; ELECTRON; ELECTROCHEMISTRY; EVOLUTION;
D O I
10.1007/s11434-015-0837-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aprotic Li-O-2 battery has attracted a great deal of interest because of its high theoretical energy density that is far beyond what the best Li-ion technologies can achieve. However, the present Li-O-2 batteries suffer from the low energy efficiency that is limited mainly by the high overpotentials required to re-oxidize Li2O2, the discharge product. Over the past few years, considerable research efforts have been devoted to the understanding of the Li2O2 oxidation reactions. Here, we summarize the results obtained from the fundamental study of the Li2O2 oxidation, including its morphology, reaction route, kinetics, the initial location upon oxidation and the charge transport within Li2O2. A better mechanistic understanding of the Li2O2 oxidation reaction will provide a solid foundation for the realization of practical Li-O-2 cells with a higher energy efficiency.
引用
收藏
页码:1227 / 1234
页数:8
相关论文
共 41 条
  • [1] A polymer electrolyte-based rechargeable lithium/oxygen battery
    Abraham, KM
    Jiang, Z
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : 1 - 5
  • [2] Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge
    Adams, Brian D.
    Radtke, Claudio
    Black, Robert
    Trudeau, Michel L.
    Zaghib, Karim
    Nazar, Linda F.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) : 1772 - 1778
  • [3] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [4] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [5] Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries
    Gallant, Betar M.
    Kwabi, David G.
    Mitchell, Robert R.
    Zhou, Jigang
    Thompson, Carl V.
    Shao-Horn, Yang
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) : 2518 - 2528
  • [6] DFT plus U Study of Polaronic Conduction in Li2O2 and Li2CO3: Implications for Li-Air Batteries
    Garcia-Lastra, J. M.
    Myrdal, J. S. G.
    Christensen, R.
    Thygesen, K. S.
    Vegge, T.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (11) : 5568 - 5577
  • [7] Electron and Ion Transport In Li2O2
    Gerbig, Oliver
    Merkle, Rotraut
    Maier, Joachim
    [J]. ADVANCED MATERIALS, 2013, 25 (22) : 3129 - 3133
  • [8] Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications
    Harding, Jonathon R.
    Lu, Yi-Chun
    Tsukada, Yasuhiro
    Shao-Horn, Yang
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (30) : 10540 - 10546
  • [9] Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery
    Hummelshoj, J. S.
    Blomqvist, J.
    Datta, S.
    Vegge, T.
    Rossmeisl, J.
    Thygesen, K. S.
    Luntz, A. C.
    Jacobsen, K. W.
    Norskov, J. K.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (07)
  • [10] Implications of the formation of small polarons in Li2O2 for Li-air batteries
    Kang, Joongoo
    Jung, Yoon Seok
    Wei, Su-Huai
    Dillon, Anne C.
    [J]. PHYSICAL REVIEW B, 2012, 85 (03)