Splitting quaternion algebras over quadratic number fields

被引:4
作者
Kutas, Peter [1 ]
机构
[1] Hungarian Acad Sci, Inst Comp Sci & Control, Budapest, Hungary
关键词
Explicit isomorphism; Full matrix algebra; Quadratic form; Quaternion algebra; Quadratic number field; Polynomial-time algorithm; FULL MATRIX ALGEBRAS; ALGORITHMS;
D O I
10.1016/j.jsc.2018.08.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose an algorithm for finding zero divisors in quaternion algebras over quadratic number fields, or equivalently, solving homogeneous quadratic equations in three variables over Q(root d) where d is a square-free integer. The algorithm is randomized and runs in polynomial time if one is allowed to call oracles for factoring integers. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 24 条
  • [1] BERLEKAM.ER, 1967, AT&T TECH J, V46, P1853
  • [2] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [3] Buhler J. P., 1993, The development of the number field sieve, P50, DOI [DOI 10.1007/BFB0091539, DOI 10.1007/BFB0091539.MR1321221]
  • [4] Castel P., 2011, THESIS
  • [5] Cremona JE, 2015, MATH COMPUT, V84, P895
  • [6] Cremona JE, 2003, MATH COMPUT, V72, P1417, DOI 10.1090/S0025-5718-02-01480-1
  • [7] A Lie algebra method for rational parametrization of Severi-Brauer surfaces
    de Graaf, Willem A.
    Harrison, Michael
    Pilnikova, Jana
    Schicho, Josef
    [J]. JOURNAL OF ALGEBRA, 2006, 303 (02) : 514 - 529
  • [8] Draxl P. K., 1983, SKEW FIELDS
  • [9] Giesbrecht M., 2003, P 2003 INT S SYMB AL, P127
  • [10] A New Perspective of Cyclicity in Convolutional Codes
    Gomez-Torrecillas, Jose
    Lobillo, F. J.
    Navarro, Gabriel
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (05) : 2702 - 2706