A meshless approximate solution of mixed Volterra-Fredholm integral equations

被引:11
作者
Dastjerdi, H. Laeli [1 ]
Ghaini, F. M. Maalek [1 ]
Hadizadeh, M. [2 ]
机构
[1] Yazd Univ, Dept Math, Yazd, Iran
[2] KN Toosi Univ Technol, Dept Math, Tehran, Iran
关键词
mixed VolterraFredholm integral equation; collocation method; radial basis functions; meshless method; numerical treatment; 45A99; 45A05; SPREAD;
D O I
10.1080/00207160.2012.720677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a meshless method using a radial basis function collocation scheme for numerical solution of mixed VolterraFredholm integral equations, where the region of integration is a non-rectangular domain. We will show that this method requires only a scattered data of nodes in the domain. It is shown that the proposed scheme is simple and computationally attractive. Applications of the method are also demonstrated through illustrative examples.
引用
收藏
页码:527 / 538
页数:12
相关论文
共 23 条
[1]   Two-dimensional Legendre wavelets method for the mixed Volterra-Fredholm integral equations [J].
Banifatemi, E. ;
Razzaghi, M. ;
Yousefi, S. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (11) :1667-1675
[2]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[3]  
Brunner, 2010, 7 LECTIRES THEORY NU
[4]   ON THE NUMERICAL-SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS BY COLLOCATION METHODS [J].
BRUNNER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :987-1000
[5]   THRESHOLDS AND TRAVELING WAVES FOR THE GEOGRAPHICAL SPREAD OF INFECTION [J].
DIEKMANN, O .
JOURNAL OF MATHEMATICAL BIOLOGY, 1978, 6 (02) :109-130
[6]   On choosing "optimal" shape parameters for RBF approximation [J].
Fasshatier, Gregory E. ;
Zhang, Jack G. .
NUMERICAL ALGORITHMS, 2007, 45 (1-4) :345-368
[7]  
Fasshauer G.E., 2007, Meshfree Approximations Methods with Matlab
[8]   On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere [J].
Fornberg, Bengt ;
Piret, Cecile .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (05) :2758-2780
[9]  
GUOQIANG H, 1995, J COMPUT APPL MATH, V59, P49
[10]  
Hacia L, 1996, Z ANGEW MATH MECH, V76, P415