CONSTRAINED ENERGY MINIMIZATION AND GROUND STATES FOR NLS WITH POINT DEFECTS

被引:31
作者
Adami, Riccardo [1 ]
Noja, Diego [2 ]
Visciglia, Nicola [3 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, I-10129 Turin, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[3] Univ Pisa, Dipartimento Matemat, I-56100 Pisa, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2013年 / 18卷 / 05期
关键词
Nonlinear Schrodinger equation; point interactions; ground states; concentration-compactness; solvable models; NONLINEAR SCHRODINGER-EQUATION; FAST SOLITON SCATTERING; ORBITAL STABILITY; DELTA-IMPURITIES; STAR GRAPHS; WAVES; CONVERGENCE; SYMMETRY;
D O I
10.3934/dcdsb.2013.18.1155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the ground states of the one-dimensional nonlinear Schrodinger equation with a defect located at a fixed point. The nonlinearity is focusing and consists of a subcritical power. The notion of ground state can be defined in several (often non-equivalent) ways. We define a ground state as a minimizer of the energy functional among the functions endowed with the same mass. This is the physically meaningful definition in the main fields of application of NLS. In this context we prove an abstract theorem that revisits the concentration-compactness method and which is suitable to treat NLS with inhomogeneities. Then we apply it to three models, describing three different kinds of defect: delta potential, delta prime interaction, and dipole. In the three cases we explicitly compute ground states and we show their orbital stability.
引用
收藏
页码:1155 / 1188
页数:34
相关论文
共 41 条
[1]   Stationary states of NLS on star graphs [J].
Adami, R. ;
Cacciapuoti, C. ;
Finco, D. ;
Noja, D. .
EPL, 2012, 100 (01)
[2]   Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a δ′ Interaction [J].
Adami, Riccardo ;
Noja, Diego .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (01) :247-289
[3]   On the structure of critical energy levels for the cubic focusing NLS on star graphs [J].
Adami, Riccardo ;
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)
[4]  
Adami R, 2010, PHYS RES TECHNOL, P169
[5]   FAST SOLITONS ON STAR GRAPHS [J].
Adami, Riccardo ;
Cacciapuoti, Claudio ;
Finco, Domenico ;
Noja, Diego .
REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (04) :409-451
[6]   Existence of dynamics for a 1D NLS equation perturbed with a generalized point defect [J].
Adami, Riccardo ;
Noja, Diego .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (49)
[7]  
Akhiezer N., 1963, THEORY OF LINEAR OPE
[8]   FUNDAMENTAL SOLUTION OF THE HEAT AND SCHRODINGER-EQUATIONS WITH POINT INTERACTION [J].
ALBEVERIO, S ;
BRZEZNIAK, Z ;
DABROWSKI, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (01) :220-254
[9]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics, V2
[10]  
Albeverio S., 2000, Singular Perturbations of Differential Operators