Graphene Oxide-Tuned MoS2 with an Expanded Interlayer for Efficient Hybrid Capacitive Deionization

被引:61
作者
Gao, Lijun [1 ]
Dong, Qiang [1 ]
Bai, Silin [1 ]
Liang, Sucen [1 ]
Hu, Chao [1 ]
Qiu, Jieshan [2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China
[2] Dalian Univ Technol, State Key Lab Fine Chem, Sch Chem Engn, Liaoning Key Lab Energy Mat & Chem Engn, Dalian 116024, Peoples R China
[3] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
electroadsorption; water desalination; graphene composites; MoS2; nanosheets; capacitive deionization; CARBON NANOFIBER WEBS; PERFORMANCE; WATER; NANOSHEETS; ELECTRODE; BRACKISH; INTERCALATION; DESALINATION; TECHNOLOGY; NANOTUBE;
D O I
10.1021/acssuschemeng.0c01453
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Capacitive deionization (CDI) has shown great promise in desalinating salt water; however, conventional CDI electrode materials suffer from low specific salt capacity and charge efficiency owing to the co-ion expulsion effect. Herein, using expanded MoS2 nanosheets supported by reduced graphene oxide (MoS2/rGO) as the intercalation electrode, we develop a hybrid CDI system that shows a battery-like behavior and can reversibly store cations through the intercalation mechanism. The incorporation of rGO in the composite not only affords a conductive support and ensures fast electron transfer but also, more importantly, widens the MoS2 interlayer spacing from 0.62 to 0.73 nm. The expanded MoS2 interlayer facilitates the diffusion of cations and decreases the internal strain during the intercalation/de-intercalation process. Also, it endows MoS2/rGO with more accessible sites and space for cations in the electrolyte. Benefiting from the desirable structure features, the hybrid CDI system delivers a remarkable specific salt capacity of 34.20 mg g(-1) and a charge efficiency as high as 97% in 300 mg L-1 sodium chloride aqueous solution. The MoS2/rGO involved in the CDI system for the adsorption of other metal ions is also verified, indicating its potential applications for the removal of various metal ions in brackish water and seawater.
引用
收藏
页码:9690 / 9697
页数:8
相关论文
共 48 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   Membrane distillation: A comprehensive review [J].
Alkhudhiri, Abdullah ;
Darwish, Naif ;
Hilal, Nidal .
DESALINATION, 2012, 287 :2-18
[3]   Theory of membrane capacitive deionization including the effect of the electrode pore space [J].
Biesheuvel, P. M. ;
Zhao, R. ;
Porada, S. ;
van der Wal, A. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 360 (01) :239-248
[4]   Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination [J].
Ding, Meng ;
Shi, Wenhui ;
Guo, Lu ;
Leong, Zhi Yi ;
Baji, Avinash ;
Yang, Hui Ying .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (13) :6113-6121
[5]   Electrosorption of inorganic salts from aqueous solution using carbon aerogels [J].
Gabelich, CJ ;
Tran, TD ;
Suffet, IH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (13) :3010-3019
[6]   Reverse osmosis desalination: Water sources, technology, and today's challenges [J].
Greenlee, Lauren F. ;
Lawler, Desmond F. ;
Freeman, Benny D. ;
Marrot, Benoit ;
Moulin, Philippe .
WATER RESEARCH, 2009, 43 (09) :2317-2348
[7]   A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism [J].
Guo, Lu ;
Mo, Runwei ;
Shi, Wenhui ;
Huang, Yinxi ;
Leong, Zhi Yi ;
Ding, Meng ;
Chen, Fuming ;
Yang, Hui Ying .
NANOSCALE, 2017, 9 (35) :13305-13312
[8]   Using Ultramicroporous Carbon for the Selective Removal of Nitrate with Capacitive Deionization [J].
Hawks, Steven A. ;
Ceron, Maira R. ;
Oyarzun, Diego I. ;
Tuan Anh Pham ;
Zhan, Cheng ;
Loeb, Colin K. ;
Mew, Daniel ;
Deinhart, Amanda ;
Wood, Brandon C. ;
Santiago, Juan G. ;
Stadermann, Michael ;
Campbell, Patrick G. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (18) :10863-10870
[9]   Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction [J].
Hu, Chao ;
Mu, Ye ;
Bai, Silin ;
Yang, Juan ;
Gao, Lijun ;
Cheng, Shao-Dong ;
Mi, Shao-Bo ;
Qiu, Jieshan .
CARBON, 2019, 153 :609-616
[10]   Three-Dimensional Network Architecture with Hybrid Nanocarbon Composites Supporting Few-Layer MoS2 for Lithium and Sodium Storage [J].
Hu, Xiang ;
Li, Yan ;
Zeng, Guang ;
Jia, Jingchun ;
Zhan, Hongbing ;
Wen, Zhenhai .
ACS NANO, 2018, 12 (02) :1592-+