Patterns of alternating sign matrices

被引:22
|
作者
Brualdi, Richard A. [1 ]
Kiernan, Kathleen P. [1 ]
Meyer, Seth A. [1 ]
Schroeder, Michael W. [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Marshall Univ, Dept Math, Huntington, WV 25755 USA
关键词
(Symmetric) alternating sign matrix; ASM; Pattern; Row (column) sum vector; Alternating signed graph; Term rank;
D O I
10.1016/j.laa.2012.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We initiate a study of the zero-nonzero patterns of n x n alternating sign matrices. We characterize the row (column) sum vectors of these patterns and determine their minimum term rank. In the case of connected alternating sign matrices, we find the minimum number of nonzero entries and characterize the case of equality. We also study symmetric alternating sign matrices, in particular, those with only zeros on the main diagonal. These give rise to alternating signed graphs without loops, and we determine the maximum number of edges in such graphs. We also consider n x n alternating sign matrices whose patterns are maximal within the class of all n x n alternating sign matrices. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3967 / 3990
页数:24
相关论文
共 50 条
  • [1] Ranks of dense alternating sign matrices and their sign patterns
    Fiedler, Miroslav
    Gao, Wei
    Hall, Frank J.
    Jing, Guangming
    Li, Zhongshan
    Stroev, Mikhail
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 109 - 121
  • [2] Alternating Sign Matrices and Polynomiography
    Kalantari, Bahman
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (02):
  • [3] Completions of Alternating Sign Matrices
    Richard A. Brualdi
    Hwa Kyung Kim
    Graphs and Combinatorics, 2015, 31 : 507 - 522
  • [4] Alternating sign matrices and tournaments
    Chapman, R
    ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) : 318 - 335
  • [5] ALTERNATING-SIGN MATRICES
    BOUSQUETMELOU, M
    HABSIEGER, L
    DISCRETE MATHEMATICS, 1995, 139 (1-3) : 57 - 72
  • [6] DETERMINANTS AND ALTERNATING SIGN MATRICES
    ROBBINS, DP
    RUMSEY, H
    ADVANCES IN MATHEMATICS, 1986, 62 (02) : 169 - 184
  • [7] Completions of Alternating Sign Matrices
    Brualdi, Richard A.
    Kim, Hwa Kyung
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 507 - 522
  • [8] Symmetric alternating sign matrices
    Brualdi, Richard A.
    Kim, Hwa Kyung
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 333 - 345
  • [9] A Generalization of Alternating Sign Matrices
    Brualdi, Richard A.
    Kim, Hwa K.
    JOURNAL OF COMBINATORIAL DESIGNS, 2015, 23 (05) : 204 - 215
  • [10] GENERALIZED ALTERNATING SIGN MATRICES AND SIGNED PERMUTATION MATRICES
    Brualdi, Richard A.
    Kim, Hwa Kyung
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (04) : 921 - 948