RubiX: Combining Spatial Resolutions for Bayesian Inference of Crossing Fibers in Diffusion MRI

被引:25
|
作者
Sotiropoulos, Stamatios N. [1 ]
Jbabdi, Saad [1 ]
Andersson, Jesper L. [1 ]
Woolrich, Mark W. [1 ,2 ]
Ugurbil, Kamil [3 ]
Behrens, Timothy E. J. [1 ,4 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Ctr Funct MRI Brain, Oxford OX3 9DU, England
[2] Univ Oxford, Warneford Hosp, Oxford Ctr Human Brain Act, Oxford OX3 7JX, England
[3] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
[4] UCL, Wellcome Trust Ctr NeuroImaging, London WC1N 3BG, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
Brain; diffusion-weighted imaging; inverse methods; magnetic resonance imaging (MRI); tractography; WHITE-MATTER; ORIENTATION; IMAGES; BRAIN; MODEL; BALL; TRACTOGRAPHY; SUPERRESOLUTION; RECONSTRUCTION; DECONVOLUTION;
D O I
10.1109/TMI.2012.2231873
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The trade-off between signal-to-noise ratio (SNR) and spatial specificity governs the choice of spatial resolution in magnetic resonance imaging (MRI); diffusion-weighted (DW) MRI is no exception. Images of lower resolution have higher signal to noise ratio, but also more partial volume artifacts. We present a data-fusion approach for tackling this trade-off by combining DW MRI data acquired both at high and low spatial resolution. We combine all data into a single Bayesian model to estimate the underlying fiber patterns and diffusion parameters. The proposed model, therefore, combines the benefits of each acquisition. We show that fiber crossings at the highest spatial resolution can be inferred more robustly and accurately using such a model compared to a simpler model that operates only on high-resolution data, when both approaches are matched for acquisition time.
引用
收藏
页码:969 / 982
页数:14
相关论文
共 9 条
  • [1] Axon Diameter Mapping in Crossing Fibers with Diffusion MRI
    Zhang, Hui
    Dyrby, Tim B.
    Alexander, Daniel C.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2011), PT II, 2011, 6892 : 82 - +
  • [2] Can increased spatial resolution solve the crossing fiber problem for diffusion MRI?
    Schilling, Kurt
    Gao, Yurui
    Janve, Vaibhav
    Stepniewska, Iwona
    Landman, Bennett A.
    Anderson, Adam W.
    NMR IN BIOMEDICINE, 2017, 30 (12)
  • [3] Diffusion MRI Tractography of Crossing Fibers by Cone-Beam ODF Regularization
    Ehricke, H. H.
    Otto, K. M.
    Kumar, V.
    Klose, U.
    PATTERN RECOGNITION, PROCEEDINGS, 2009, 5748 : 412 - +
  • [4] Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI
    Farooq, Hamza
    Xu, Junqian
    Nam, Jung Who
    Keefe, Daniel F.
    Yacoub, Essa
    Georgiou, Tryphon
    Lenglet, Christophe
    SCIENTIFIC REPORTS, 2016, 6
  • [5] Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI
    Landman, Bennett A.
    Bogovic, John A.
    Wan, Hanlin
    ElShahaby, Fatma El Zahraa
    Bazin, Pierre-Louis
    Prince, Jerry L.
    NEUROIMAGE, 2012, 59 (03) : 2175 - 2186
  • [6] Resolution of Crossing Fibers with Constrained Compressed Sensing using Traditional Diffusion Tensor MRI
    Landman, Bennett A.
    Wan, Hanlin
    Bogovic, John A.
    Bazin, Pierre-Louis
    Prince, Jerry L.
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [7] Independent component analysis tractography combined with a ball-stick model to isolate intravoxel crossing fibers of the corticospinal tracts in clinical diffusion MRI
    Jeong, Jeong-Won
    Asano, Eishi
    Yeh, Fang-Cheng
    Chugani, Diane C.
    Chugani, Harry T.
    MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (02) : 441 - 453
  • [8] Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI
    Pisharady, Pramod Kumar
    Duarte-Carvajalino, Julio M.
    Sotiropoulos, Stamatios N.
    Sapiro, Guillermo
    Lenglet, Christophe
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 : 117 - 124
  • [9] Joint Inference on Structural and Diffusion MRI for Sequence-Adaptive Bayesian Segmentation of Thalamic Nuclei with Probabilistic Atlases
    Iglesias, Juan Eugenio
    Van Leemput, Koen
    Golland, Polina
    Yendiki, Anastasia
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 : 767 - 779