Enhancement of Krylov Subspace Spectral Methods by Block Lanczos Iteration

被引:0
|
作者
Lambers, James V. [1 ]
机构
[1] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
关键词
spectral methods; Gaussian quadrature; variable-coefficient; block Lanczos method; stability; heat equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a modification of Krylov Subspace Spectral (KSS) Methods, which build on the work of Golub, Meurant and others pertaining to moments and Gaussian quadrature to produce high-order accurate approximate solutions to variable-coefficient time-dependent PDE. Whereas KSS methods currently use Lanczos iteration to compute the needed quadrature rules, the modification uses block Lanczos iteration in order to avoid the need to compute two quadrature rules for each component of the solution, or use perturbations of quadrature rules. It will be shown that under reasonable assumptions on the coefficients of the problem, a 1-node KSS method is unconditionally stable, and methods with more than one node are shown to possess favorable stability properties as well. Numerical results suggest that block KSS methods are significantly more accurate than their non-block counterparts.
引用
收藏
页码:347 / 350
页数:4
相关论文
共 50 条
  • [31] Preconditioned Krylov subspace and GMRHSS iteration methods for solving the nonsymmetric saddle point problems
    A. Badahmane
    A. H. Bentbib
    H. Sadok
    Numerical Algorithms, 2020, 84 : 1295 - 1312
  • [32] Preconditioned Krylov subspace and GMRHSS iteration methods for solving the nonsymmetric saddle point problems
    Badahmane, A.
    Bentbib, A. H.
    Sadok, H.
    NUMERICAL ALGORITHMS, 2020, 84 (04) : 1295 - 1312
  • [33] Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems
    Axelsson, Owe
    Farouq, Shiraz
    Neytcheva, Maya
    NUMERICAL ALGORITHMS, 2016, 73 (03) : 631 - 663
  • [34] Krylov subspace spectral methods for systems of variable-coefficient PDE
    Lambers, James V.
    Numerical Analysis and Applied Mathematics, 2007, 936 : 332 - 335
  • [35] Convergence Analysis of Krylov Subspace Spectral Methods for Reaction–Diffusion Equations
    Somayyeh Sheikholeslami
    James V. Lambers
    Carley Walker
    Journal of Scientific Computing, 2019, 78 : 1768 - 1789
  • [36] Linearized Krylov subspace Bregman iteration with nonnegativity constraint
    Alessandro Buccini
    Mirjeta Pasha
    Lothar Reichel
    Numerical Algorithms, 2021, 87 : 1177 - 1200
  • [37] Domain-Decomposition Approach to Krylov Subspace Iteration
    Iupikov, O. A.
    Craeye, C.
    Maaskant, R.
    Ivashina, M. V.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 : 1414 - 1417
  • [38] Linearized Krylov subspace Bregman iteration with nonnegativity constraint
    Buccini, Alessandro
    Pasha, Mirjeta
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2021, 87 (03) : 1177 - 1200
  • [39] Inverse Subspace Iteration for Spectral Stochastic Finite Element Methods
    Sousedik, Bedrich
    Elman, Howard C.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 163 - 189
  • [40] KRYLOV SUBSPACE METHODS ON SUPERCOMPUTERS
    SAAD, Y
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (06): : 1200 - 1232