Pattern formation in three-dimensional reaction-diffusion systems

被引:76
|
作者
Callahan, TK
Knobloch, E [1 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
PHYSICA D | 1999年 / 132卷 / 03期
基金
美国国家科学基金会;
关键词
Turing instability; Brusselator and Lengyel-Epstein models; three-dimensional patterns;
D O I
10.1016/S0167-2789(99)00041-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability. the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamella, SC, FCC, double-diamond, hexagonal prism. BCC and BCCI states. Both models possess a special wavenumber k(*) at which the normal form coefficients take on fixed model independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:339 / 362
页数:24
相关论文
共 50 条
  • [1] Three-dimensional cellular automata for reaction-diffusion systems
    Weimar, JR
    FUNDAMENTA INFORMATICAE, 2002, 52 (1-3) : 277 - 284
  • [2] Fronts and pattern formation in reaction-diffusion systems
    Droz, M
    ANOMALOUS DIFFUSION: FROM BASICS TO APPLICATIONS, 1999, 519 : 211 - 220
  • [3] PATTERN FORMATION IN CHEMOTAXIC REACTION-DIFFUSION SYSTEMS
    Shoji, Hiroto
    Saitoh, Keitaro
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2012, 5 (03)
  • [4] Rethinking pattern formation in reaction-diffusion systems
    Halatek, J.
    Frey, E.
    NATURE PHYSICS, 2018, 14 (05) : 507 - +
  • [5] Pattern formation mechanisms in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2009, 53 (5-6): : 673 - 681
  • [6] Helicoidal instability of a scroll vortex in three-dimensional reaction-diffusion systems
    Aranson, I
    Mitkov, I
    PHYSICAL REVIEW E, 1998, 58 (04) : 4556 - 4559
  • [7] Cross-diffusion and pattern formation in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (06) : 897 - 912
  • [9] Pattern formation in reaction-diffusion systems on evolving surfaces
    Kim, Hyundong
    Yun, Ana
    Yoon, Sungha
    Lee, Chaeyoung
    Park, Jintae
    Kim, Junseok
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (09) : 2019 - 2028
  • [10] Relaxation Behavior and Pattern Formation in Reaction-Diffusion Systems
    Hanusse, P.
    Perez-Munuzuri, V.
    Gomez-Gesteira, M.
    International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 1994, 415 (05):