Ni/YSZ solid oxide fuel cell anodes operating on humidified ethanol fuel feeds: An optical study

被引:26
作者
Pomfret, Michael B. [1 ]
Steinhurst, Daniel A. [2 ]
Owrutsky, Jeffrey C. [1 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Nova Res Inc, Alexandria, VA 22308 USA
关键词
Solid oxide fuel cell; Ethanol; Thermal imaging; Steam reforming; Infrared; IN-SITU; THERMODYNAMIC ANALYSIS; COMPOSITE ANODES; METHANOL; PERFORMANCE; OXIDATION; SOFCS; SYSTEM; CONVERSION; PYROLYSIS;
D O I
10.1016/j.jpowsour.2013.01.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct internal steam reforming of ethanol fuel in solid oxide fuel cells (SOFCs) has been investigated using near-infrared thermal imaging. Thermal data are correlated to electrochemical analyses, post-mortem photographs of the cells and gas-phase infrared (FTIR) spectroscopy. These techniques allow for an understanding of how gas-phase composition and electrical conditions affect the fuel chemistry on the anode, specifically with regards to carbon formation. Ethanol flows that are humidified to H2O:C2H5OH ratios of 1.58, 1.27, and 1.12 at 700, 750, and 800 degrees C, respectively, result in far less anode damage than dry ethanol. However, subtle spatial variations in anode surface temperature indicate that damage occurs at temperatures below 800 degrees C. FTIR spectra of the fuel feed reaching the anode show that internal steam reforming occurs both in the gas phase and at the anode catalyst. Thermal imaging and post-mortem analysis confirm that humidified ethanol flows at 800 degrees C form negligible amounts of carbon deposits in polarized cells, resulting in minimal anode deterioration. These results serve as benchmark data for the further development of direct, internal reforming SOFC systems, especially in smaller, portable systems. The H2O:C2H5OH ratio used in this work is well below the >3:1 ratios suggested elsewhere. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 60 条
[31]   Steam reforming of ethanol on supported nickel catalysts [J].
Liberatori, J. W. C. ;
Ribeiro, R. U. ;
Zanchet, D. ;
Noronha, F. B. ;
Bueno, J. M. C. .
APPLIED CATALYSIS A-GENERAL, 2007, 327 (02) :197-204
[32]   Direct liquid methanol-fueled solid oxide fuel cell [J].
Liu, Mingfei ;
Peng, Ranran ;
Dong, Dehua ;
Gao, Jianfeng ;
Liu, Xingqin ;
Meng, Guangyao .
JOURNAL OF POWER SOURCES, 2008, 185 (01) :188-192
[33]   In situ potential-dependent FTIR emission spectroscopy -: A novel probe for high temperature fuel cell interfaces [J].
Lu, XY ;
Faguy, PW ;
Liu, ML .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1293-A1298
[34]   An examination of carbonaceous deposits in direct-utilization SOFC anodes [J].
McIntosh, S ;
He, HP ;
Lee, SI ;
Costa-Nunes, O ;
Krishnan, VV ;
Vohs, JM ;
Gorte, RJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A604-A608
[35]  
Mingfei L., 2008, J POWER SOURCES, P188
[36]   Conversion of hydrocarbons in solid oxide fuel cells [J].
Mogensen, M ;
Kammer, K .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :321-331
[37]   TOWARD A COMPREHENSIVE MECHANISM FOR METHANOL PYROLYSIS [J].
NORTON, TS ;
DRYER, FL .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1990, 22 (03) :219-241
[38]   Solid oxide fuel cells [J].
Ormerod, RM .
CHEMICAL SOCIETY REVIEWS, 2003, 32 (01) :17-28
[39]   Hydrocarbon fuels in solid oxide fuel cells: In situ Raman studies of graphite formation and oxidation [J].
Pomfret, Michael B. ;
Marda, Jonathan ;
Jackson, Gregory S. ;
Eichhorn, Bryan W. ;
Dean, Anthony M. ;
Walker, Robert A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (13) :5232-5240
[40]   In situ studies of fuel oxidation in solid oxide fuel cells [J].
Pomfret, Michael B. ;
Owrutsky, Jeffrey C. ;
Walker, Robert A. .
ANALYTICAL CHEMISTRY, 2007, 79 (06) :2367-2372