Suppression of non-Hermitian skin effect via Aharonov-Bohm cage

被引:5
|
作者
Chen Shu-Yue [1 ]
Chuang, Jiang [2 ]
Ke Shao-Lin [2 ]
Bing, Wang [1 ]
Lu Pei-Xiang [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[2] Wuhan Inst Technol, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan 430205, Peoples R China
基金
中国国家自然科学基金; 英国科研创新办公室;
关键词
non-Hermitian skin effect; Aharonov-Bohm cage; synthetic gauge potential; ring resonator array; PHOTONIC CRYSTALS; WAVE-GUIDE; MODES; FIELD; SPIN;
D O I
10.7498/aps.71.20220978
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The application of energy band theory in optics provides an effective approach to modulating the flow of light. The recent discovery of non-Hermitian skin effect promotes the development of traditional energy band theory, which further enables an alternative way to realize light localization and unidirectional propagation. However, how to effectively generate and steer the non-Hermitian skin effect is still an important topic, especially in integrated optical systems. Here, we investigate the non-Hermitian skin effect in quasi-one-dimensional rhombic optical lattice with synthetic gauge potential. By calculating the eigenenergy spectra, spectral winding number, and wave dynamics, the gauge potential can be utilized to effectively tune the localization strength of skin modes. In particular, the skin effect is completely suppressed when the gauge potential in each plaquette is equal to p, while the flat-band localization caused by Aharonov-Bohm caging effect is dominant. By utilizing the indirectly coupled micro ring resonator array, the gauge potential and asymmetric coupling can be generated at the same time, which provides a potential experimental scheme to explore the competition between Aharonov-Bohm cage and skin effect. The present study provides an alternative way to steer the skin effect, which offers an approach to achieving the on-chip non-magnetic unidirectional optical devices.
引用
收藏
页数:9
相关论文
共 42 条
  • [1] Real-time observation of frequency Bloch oscillations with fibre loop modulation
    Chen, Hao
    Yang, NingNing
    Qin, Chengzhi
    Li, Wenwan
    Wang, Bing
    Han, Tianwen
    Zhang, Chi
    Liu, Weiwei
    Wang, Kai
    Long, Hua
    Zhang, Xinliang
    Lu, Peixiang
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
  • [2] Dong JW, 2017, NAT MATER, V16, P298, DOI [10.1038/NMAT4807, 10.1038/nmat4807]
  • [3] Fang KJ, 2012, NAT PHOTONICS, V6, P782, DOI [10.1038/NPHOTON.2012.236, 10.1038/nphoton.2012.236]
  • [4] Anomalous Topological Edge States in Non-Hermitian Piezophononic Media
    Gao, Penglin
    Willatzen, Morten
    Christensen, Johan
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (20)
  • [5] Light propagation and localization in modulated photonic lattices and waveguides
    Garanovich, Ivan L.
    Longhi, Stefano
    Sukhorukov, Andrey A.
    Kivshar, Yuri S.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 518 (1-2): : 1 - 79
  • [6] Hafezi M, 2013, NAT PHOTONICS, V7, P1001, DOI [10.1038/nphoton.2013.274, 10.1038/NPHOTON.2013.274]
  • [7] Hafezi M, 2011, NAT PHYS, V7, P907, DOI [10.1038/NPHYS2063, 10.1038/nphys2063]
  • [8] Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices
    Jiang, Hui
    Lang, Li-Jun
    Yang, Chao
    Zhu, Shi-Liang
    Chen, Shu
    [J]. PHYSICAL REVIEW B, 2019, 100 (05)
  • [9] Photonic crystals: Putting a new twist on light
    Joannopoulos, JD
    Villeneuve, PR
    Fan, SH
    [J]. NATURE, 1997, 386 (6621) : 143 - 149
  • [10] Artificial gauge field switching using orbital angular momentum modes in optical waveguides
    Joerg, Christina
    Queralto, Gerard
    Kremer, Mark
    Pelegri, Gerard
    Schulz, Julian
    Szameit, Alexander
    von Freymann, Georg
    Mompart, Jordi
    Ahufinger, Veronica
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)