Excited-state phase transition leading to symmetry-breaking steady states in the Dicke model

被引:53
作者
Puebla, Ricardo [1 ]
Relano, Armando [2 ,3 ]
Retamosa, Joaquin [1 ]
机构
[1] Univ Complutense Madrid, Grp Fis Nucl, Dept Fis Atom Mol & Nucl, E-28040 Madrid, Spain
[2] Univ Complutense Madrid, Dept Fisica Aplicada 1, E-28040 Madrid, Spain
[3] Univ Complutense Madrid, GISC, E-28040 Madrid, Spain
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 02期
关键词
2-LEVEL ATOMS; FIELD;
D O I
10.1103/PhysRevA.87.023819
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the phase diagram of the Dicke model in terms of the excitation energy and the radiation-matter coupling constant lambda. Below a certain critical value lambda(c), all the energy levels have a well-defined parity. For lambda > lambda(c) the energy spectrum exhibits two different phases separated by a critical energy E-c that proves to be independent of lambda. In the upper phase, the energy levels have also a well-defined parity, but below E-c the energy levels are doubly degenerated. We show that the long-time behavior of appropriate parity-breaking observables distinguishes between these two different phases of the energy spectrum. Steady states reached from symmetry-breaking initial conditions restore the symmetry only if their expected energies are above the critical. This fact makes it possible to experimentally explore the complete phase diagram of the excitation spectrum of the Dicke model. DOI: 10.1103/PhysRevA.87.023819
引用
收藏
页数:5
相关论文
共 22 条
[1]   Equilibration and macroscopic quantum fluctuations in the Dicke model [J].
Altland, Alexander ;
Haake, Fritz .
NEW JOURNAL OF PHYSICS, 2012, 14
[2]   Thermal phase transitions for Dicke-type models in the ultrastrong-coupling limit [J].
Aparicio Alcalde, M. ;
Bucher, M. ;
Emary, C. ;
Brandes, T. .
PHYSICAL REVIEW E, 2012, 86 (01)
[3]   Direct measurement of the Wigner function by photon counting [J].
Banaszek, K ;
Radzewicz, C ;
Wódkiewicz, K ;
Krasinski, JS .
PHYSICAL REVIEW A, 1999, 60 (01) :674-677
[4]   Nonequilibrium Quantum Phase Transitions in the Dicke Model [J].
Bastidas, V. M. ;
Emary, C. ;
Regler, B. ;
Brandes, T. .
PHYSICAL REVIEW LETTERS, 2012, 108 (04)
[5]   Exploring Symmetry Breaking at the Dicke Quantum Phase Transition [J].
Baumann, K. ;
Mottl, R. ;
Brennecke, F. ;
Esslinger, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)
[6]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[7]   NO-GO THEOREM CONCERNING THE SUPER-RADIANT PHASE-TRANSITION IN ATOMIC SYSTEMS [J].
BIALYNICKIBIRULA, I ;
RZAZEWSKI, K .
PHYSICAL REVIEW A, 1979, 19 (01) :301-303
[8]   HIGHER-ORDER CORRECTIONS TO DICKE SUPERRADIANT PHASE-TRANSITION [J].
CARMICHAEL, HJ ;
GARDINER, CW ;
WALLS, DF .
PHYSICS LETTERS A, 1973, A 46 (01) :47-48
[9]   Reconstruction of non-classical cavity field states with snapshots of their decoherence [J].
Deleglise, Samuel ;
Dotsenko, Igor ;
Sayrin, Clement ;
Bernu, Julien ;
Brune, Michel ;
Raimond, Jean-Michel ;
Haroche, Serge .
NATURE, 2008, 455 (7212) :510-514
[10]   COHERENCE IN SPONTANEOUS RADIATION PROCESSES [J].
DICKE, RH .
PHYSICAL REVIEW, 1954, 93 (01) :99-110