Analyzing gene perturbation screens with nested effects models in R and bioconductor

被引:15
作者
Froehlich, Holger [2 ]
Beissbarth, Tim [2 ]
Tresch, Achim [3 ]
Kostka, Dennis [4 ,5 ]
Jacob, Juby [1 ]
Spang, Rainer [1 ]
Markowetz, F. [6 ,7 ]
机构
[1] Univ Regensburg, Inst Funct Genom, Computat Diagnost Grp, D-93053 Regensburg, Germany
[2] Deutsch Krebsforschungszentrum, D-69120 Heidelberg, Germany
[3] Univ Munich, Gene Ctr, Munich, Germany
[4] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
[5] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[6] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[7] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btn446
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Nested effects models (NEMs) are a class of probabilistic models introduced to analyze the effects of gene perturbation screens visible in high-dimensional phenotypes like microarrays or cell morphology. NEMs reverse engineer upstream/downstream relations of cellular signaling cascades. NEMs take as input a set of candidate pathway genes and phenotypic profiles of perturbing these genes. NEMs return a pathway structure explaining the observed perturbation effects. Here, we describe the package nem, an open-source software to efficiently infer NEMs from data. Our software implements several search algorithms for model fitting and is applicable to a wide range of different data types and representations. The methods we present summarize the current state-of-the-art in NEMs.
引用
收藏
页码:2549 / 2550
页数:2
相关论文
共 10 条
  • [1] Sequential activation of signaling pathways during innate immune responses in Drosophila
    Boutros, M
    Agaisse, H
    Perrimon, N
    [J]. DEVELOPMENTAL CELL, 2002, 3 (05) : 711 - 722
  • [2] FROHLICH H, 2008, BIOINFORMATICS, V1
  • [3] GOSim -: an R-package for computation of information theoretic GO similarities between terms and gene products
    Frohlich, Holger
    Speer, Nora
    Poustka, Annemarie
    Beissarth, Tim
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [4] Bioconductor: open software development for computational biology and bioinformatics
    Gentleman, RC
    Carey, VJ
    Bates, DM
    Bolstad, B
    Dettling, M
    Dudoit, S
    Ellis, B
    Gautier, L
    Ge, YC
    Gentry, J
    Hornik, K
    Hothorn, T
    Huber, W
    Iacus, S
    Irizarry, R
    Leisch, F
    Li, C
    Maechler, M
    Rossini, AJ
    Sawitzki, G
    Smith, C
    Smyth, G
    Tierney, L
    Yang, JYH
    Zhang, JH
    [J]. GENOME BIOLOGY, 2004, 5 (10)
  • [5] Detecting hierarchical structure in molecular characteristics of disease using transitive approximations of directed graphs
    Jacob, Juby
    Jentsch, Marcel
    Kostka, Dennis
    Bentink, Stefan
    Spang, Rainer
    [J]. BIOINFORMATICS, 2008, 24 (07) : 995 - 1001
  • [6] Non-transcriptional pathway features reconstructed from secondary effects of RNA interference
    Markowetz, F
    Bloch, J
    Spang, R
    [J]. BIOINFORMATICS, 2005, 21 (21) : 4026 - 4032
  • [7] Inferring cellular networks - a review
    Markowetz, Florian
    Spang, Rainer
    [J]. BMC BIOINFORMATICS, 2007, 8 (Suppl 6)
  • [8] Nested effects models for high-dimensional phenotyping screens
    Markowetz, Florian
    Kostka, Dennis
    Troyanskaya, Olga G.
    Spang, Rainer
    [J]. BIOINFORMATICS, 2007, 23 (13) : I305 - I312
  • [9] R Core Team, 2016, R LANG ENV STAT COMP
  • [10] Tresch A, 2008, STAT APPL GENET MOL, V7