Numerical ranges of companion matrices: flat portions on the boundary

被引:6
作者
Eldred, Jeffrey [2 ]
Rodman, Leiba [1 ]
Spitkovsky, Ilya [1 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA
关键词
numerical range; companion matrix;
D O I
10.1080/03081087.2011.634415
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Criterion for a companion matrix to have a certain number of flat portions on the boundary of its numerical range is given. The criterion is specialized to the cases of 3 x 3 and 4 x 4 matrices. In the latter case, it is proved that a 4 x 4 unitarily irreducible companion matrix cannot have three flat portions on the boundary of its numerical range. Numerical examples are given to illustrate the main results.
引用
收藏
页码:1295 / 1311
页数:17
相关论文
共 15 条
[1]  
BOTTCHER A, 2005, SPECTRAL PROPERTIES
[2]   On flat portions on the boundary of the numerical range [J].
Brown, ES ;
Spitkovsky, IA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 390 :75-109
[3]   Elliptic numerical ranges of 3x3 companion matrices [J].
Calbeck, William .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2715-2722
[4]   Companion matrices: reducibility, numerical ranges and similarity to contractions [J].
Gau, HL ;
Pei, YW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 383 :127-142
[5]   Numerical ranges of companion matrices [J].
Gau, Hwa-Long ;
Wu, Pei Yuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (2-3) :202-218
[6]   Numerical ranges of reducible companion matrices [J].
Gau, Hwa-Long .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (05) :1310-1321
[7]  
Gustafson K. E., 1997, NUMERICAL RANGE FIEL
[8]   THE NUMERICAL RADIUS OF A NILPOTENT OPERATOR ON A HILBERT-SPACE [J].
HAAGERUP, U ;
DELAHARPE, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (02) :371-379
[9]   The standard value of a bilinear form. [J].
Hausdorff, F .
MATHEMATISCHE ZEITSCHRIFT, 1919, 3 :314-316
[10]  
Horn RA., 2013, MATRIX ANAL