Tropospheric phase calibration in millimeter interferometry

被引:72
|
作者
Carilli, CL [1 ]
Holdaway, MA [1 ]
机构
[1] Natl Radio Astron Observ, Tucson, AZ 85721 USA
关键词
D O I
10.1029/1999RS900048
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We review millimeter interferometric phase variations caused by variations in the precipitable water vapor content of the troposphere, and we discuss techniques proposed to correct for these variations. We present observations with the Very Large Array (VLA) at 22 and 43 GHz designed to test these techniques. We find that both the fast switching and paired array calibration techniques are effective at reducing tropospheric phase noise for radio interferometers. In both cases, the residual rms phase fluctuations after correction are independent of baseline length for b > b(eff). These techniques allow for diffraction-limited imaging of faint sources on arbitrarily long baselines at millimeter wavelengths. We consider the technique of tropospheric phase correction using a measurement of the precipitable water vapor content of the troposphere via a radiometric measurement of the brightness temperature of the atmosphere. Required sensitivities range from 20 mK at 90 GHz to 1 K at 185 GHz for the millimeter array (MMA) and to 120 mK for the VLA at 22 GHz. The minimum gain stability requirement is 200 at 185 GHz at the MMA, assuming that the astronomical receivers are used for radiometry. This increases to 2000 for an uncooled system. The stability requirement is 450 for the cooled system at the VLA at 22 GHz. To perform absolute radiometric phase corrections also requires knowledge of the tropospheric parameters and models to an accuracy of a few percent. It may be possible to perform an "empirically calibrated" radiometric phase correction, in which the relationship between fluctuations in brightness temperature differences and fluctuations in interferometric phases is calibrated by observing a strong celestial calibrator at regular intervals. A number of questions remain concerning this technique, including the following: (1) Over what timescale and distance will this technique allow for radiometric phase corrections when switching between the source and the calibrator? (2) How often will calibration of the T-B(rms) - phi(rms) relationship be required?
引用
收藏
页码:817 / 840
页数:24
相关论文
共 50 条
  • [1] Tropospheric phase calibration in millimeter interferometry
    Carilli, C.L.
    Holdaway, M.A.
    Radio Science, 1999, 34 (04): : 817 - 840
  • [2] Tropospheric and ionospheric phase calibration
    Lestrade, JF
    ROLE OF VLBI IN ASTROPHYSICS, ASTROMETRY AND GEODESY, 2004, 135 : 383 - 401
  • [3] Harmonic calibration of quadrature phase interferometry
    Ferrero, Baptiste
    Bellon, Ludovic
    EPL, 2022, 139 (05)
  • [4] PHASE CALIBRATION OF THE PROPOSED MILLIMETER ARRAY
    HOLDAWAY, MA
    VERY HIGH ANGULAR RESOLUTION IMAGING, 1994, (158): : 101 - 103
  • [5] Calibration of phase lamellae by interferometry at 13 nm
    Pichon, P
    Joyeux, D
    Phalippou, D
    Singh, M
    Braat, M
    Haidl, M
    Dinger, U
    JOURNAL DE PHYSIQUE IV, 2001, 11 (PR7): : 25 - 26
  • [6] Millimeter interferometry
    Carilli, CL
    Carlstrom, JE
    Holdaway, MA
    SYNTHESIS IMAGING IN RADIO ASTRONOMY II, 1999, 180 : 565 - 600
  • [7] Phase calibration of arrays at optical and millimeter wavelengths
    Electronics Division, Defence Research Agency, St. Andrew's Road, Malvern, Worcester, WR14 3PS, United Kingdom
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13 (07): : 1593 - 1600
  • [8] Phase calibration of arrays at optical and millimeter wavelengths
    Blanchard, PM
    Greenaway, AH
    Anderton, RN
    Appleby, R
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (07): : 1593 - 1600
  • [9] Phase-step calibration for phase-stepped interferometry
    van Brug, H
    APPLIED OPTICS, 1999, 38 (16) : 3549 - 3555
  • [10] PHASE-SHIFTER CALIBRATION IN PHASE-SHIFTING INTERFEROMETRY
    CHENG, YY
    WYANT, JC
    APPLIED OPTICS, 1985, 24 (18): : 3049 - 3052