The exact dependence on A2(w) for the Lp(R, w) maximal inequalities

被引:1
作者
D'Onofrio, L. [1 ]
Schiattarella, R. [2 ]
机构
[1] Univ Parthenope, Dipartimento Stat & Matemat Ric Econ, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
Maximal operators; Weighted norm inequalities; WEIGHTED NORM INEQUALITIES; OPERATOR;
D O I
10.1016/j.jmaa.2012.11.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Buckley (1993) [3] proved the linear dependence parallel to M parallel to L2(Rn,w) <= c(n)A of the L-2(R-n, w)-norm for the Hardy-Littlewood maximal operator M on the classical A(2)-constant A =A(2)(w) = supQfQwfQw(-1) where the supremum is taken over all cubes with sides parallel to the axes. We prove in the case n = 1 that, for P-0 = 1 + root A-1/A < p <= 2, the dependence on the constant A is precisely preserved parallel to M parallel to(p)(L)((R,w)) <= c(p) [a/1 - p(2 - p)A](1/p-1) and it is impossible to decrease the value of p(0). Similar exact continuation theorems hold for the L-2-norm inequalities of weighted maximal operators. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 405
页数:10
相关论文
共 20 条